Skip to main content

Impact of Predators on Arthropod Herbivores and Herbivory along Mountain Ranges on Islands Versus Mainland

  • Chapter
  • First Online:
Ecology and Evolution of Plant-Herbivore Interactions on Islands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 249))

  • 129 Accesses

Abstract

Trophic interactions between plants, herbivorous arthropods, and their predators are complex and prone to trophic cascades. Understanding these interactions is important, yet they received little attention especially for marine islands. Nevertheless, marine islands offer systems where species interactions are tractable, and their underlying drivers can be explicitly assessed. Herbivory and predation rate are expected to be lower on islands relative to mainland given the lower abundance and diversity across trophic levels. In addition, herbivory and predation are expected to be higher at low elevations due to reduced abiotic stress and more stable abiotic conditions. However, elevational clines in biotic and abiotic conditions may vary on islands relative to mainland, setting the stage for differential gradients on each landform type. Indeed, mountainous islands provide a key opportunity to test how insularity shapes trophic interactions along abiotic clines and departures from these patterns relative to mainland. To address this, we conducted a meta-analysis of predator exclusion studies on both landform types aimed to test for the strength of predation pressure on arthropod communities and herbivory. Our findings indicate that insectivorous vertebrates significantly reduce arthropod abundances and herbivore damage, and such effect was stronger overall on islands than on mainland but did not vary significantly with elevation for either landform type. This latter result could be explained by stronger effects of vertebrates on invertebrate predators at low elevations, thus dampening predator effects on herbivory at low elevation via intra-guild predation. In contrast, mean effects of invertebrate predators, i.e. ants, on herbivory did not differ between mainland and islands (though significant increases in herbivores and herbivory were found on mainland but not islands), but did show a significant decrease with elevation which was statistically indistinguishable across landform types. Combined, these results show strong contingency in responses based on the type of predator type and counter predictions of weaker top-down control on islands, at higher elevations, and further suggest no qualitative differences in elevational clines in predation pressure across environment types. These findings deserve attention in future mechanistic tests with different types of predation, herbivory, and plant traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso C (1999) Variation in herbivory by Yponomeuta mahalebella on its only host plant Prunus mahaleb along an elevational gradient. Ecol Entomol 24:371–379

    Article  Google Scholar 

  • Andrew NR, Roberts IR, Hill SJ (2012) Insect herbivory along environmental gradients. Open J Ecol 2:202

    Article  Google Scholar 

  • Arnold AE, Asquith NM (2002) Herbivory in a fragmented tropical forest: patterns from islands at Lago Gatun, Panama. Biodivers Conserv 11:1663–1680

    Article  Google Scholar 

  • Banse K (2007) Do we live in a largely top-down regulated world? J Biosci 32:791–796

    Article  PubMed  Google Scholar 

  • Barry RG (1992) Mountain weather & climate. Psychology Press

    Google Scholar 

  • Barry RG, Chorley RJ (2009) Atmosphere, weather and climate. Routledge

    Book  Google Scholar 

  • Becker P (1975) Island colonization by carnivorous and herbivorous Coleoptera. J Anim Ecol 44:893–906

    Article  Google Scholar 

  • Belovsky GE, Slade J (1993) The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68:193–201

    Article  Google Scholar 

  • Bito D, Novotny V, Burwell CJ, Nakamura A, Kitching RL, Ødegaard F (2011) Predator pressure, herbivore abundance and plant damage along a subtropical altitudinal gradient. Memoirs of the Queensland Museum 55:451–461

    Google Scholar 

  • Blackburn TM, Delean S, PyÅ¡ek P, Cassey P (2016) On the Island biogeography of aliens: a global analysis of the richness of plant and bird species on oceanic islands. Glob Ecol Biogeogr 25:859–868

    Article  Google Scholar 

  • Borregaard MK, Matthews TJ, Whittaker RJ (2016) The general dynamic model: towards a unified theory of Island biogeography? Glob Ecol Biogeogr 25:805–816

    Article  Google Scholar 

  • Bowen L, Van Vuren D (1997) Insular endemic plants lack defenses against herbivores. Conserv Biol 11:1249–1254

    Article  Google Scholar 

  • Brehm G, Zeuss D, Colwell RK (2019) Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography 42:632–642

    Article  Google Scholar 

  • Brühl CA, Mohamed M, Linsenmair KE (1999) Altitudinal distribution of leaf litter ants along a transect in primary forests on mount Kinabalu, Sabah, Malaysia. J Trop Ecol 15:265–277

    Article  Google Scholar 

  • Buckley LB, Jetz W (2007) Insularity and the determinants of lizard population density. Ecol Lett 10:481–489

    Article  PubMed  Google Scholar 

  • Chan AA, Banks-Leite C (2020) Habitat modification mediates the strength of trophic cascades on oak trees. Perspect Ecol Conserv 18:313–318

    Google Scholar 

  • Coley PD, Aide TM (1991) Comparison of herbivory and plant defences in temperate and tropical broad- leaved forests, in plant-animal interactions: evolutionary ecology in the tropical and temperate regions. John Wiley & Sons Ltd., Brisbane

    Google Scholar 

  • Collins N (1980) The distribution of soil macrofauna on the west ridge of Gunung (mount) Mulu, Sarawak. Oecologia 44:263–275

    Article  CAS  PubMed  Google Scholar 

  • Curtis PS, Wang X (1998) A meta-analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  PubMed  Google Scholar 

  • Dempster J, Pollard E (1981) Fluctuations in resource availability and insect populations. Oecologia 50:412–416

    Article  CAS  PubMed  Google Scholar 

  • Faveri SB, Vasconselos HL, Dirzo R (2008) Effects of Amazonian forest fragmentation on the interaction between plants, insect herbivores, and their natural enemies. J Trop Ecol 24:57–64

    Article  Google Scholar 

  • Fernández-Palacios JM, Kreft H, Irl SD, Norder S, Ah-Peng C, Borges PA, Burns KC, de Nascimento L, Meyer JY, Montes E, Drake DR (2021) Scientists’ warning–the outstanding biodiversity of islands is in peril. Global Ecol Conserv 31:e01847

    Article  Google Scholar 

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • Fu C, Wang J, Pu Z, Zhang S, Chen H, Zhao B, Chen J, Wu J (2007) Elevational gradients of diversity for lizards and snakes in the Hengduan Mountains, China. Biodivers Conserv 16:707–726

    Article  Google Scholar 

  • Galmán A, Abdala-Roberts L, Zhang S, Berny-Mier, Teran JC, Rasmann S, Moreira X (2018) A global analysis of elevational gradients in leaf herbivory and its underlying drivers: effects of plant growth form, leaf habit and climatic correlates. J Ecol 106:413–421

    Article  Google Scholar 

  • Garibaldi LA, Kitzberger T, Chaneton EJ (2011) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167:117–129

    Article  PubMed  Google Scholar 

  • George TL (1987) Greater land bird densities on Island vs. mainland: relation to nest predation level. Ecology 68:1393–1400

    Article  Google Scholar 

  • Ghosh-Harihar MJ (2013) Distribution and abundance of foliage-arthropods across elevational gradients in the east and West Himalayas. J Anim Ecol 28:125–130

    Google Scholar 

  • Grange S, Duncan P (2006) Bottom-up and top-down processes in African ungulate communities: resources and predation acting on the relative abundance of zebra and grazing bovids. Ecography 29:899–907

    Article  Google Scholar 

  • Gruner DS (2004) Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology 85:3010–3022

    Article  Google Scholar 

  • Grytnes J-A, McCain CM (2007) Elevational trends in biodiversity. Encyclopedia of Biodiversity 2013:149–154

    Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281

    Article  CAS  PubMed  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hódar JA, Zamora R (2004) Herbivory and climatic warming: a Mediterranean outbreaking caterpillar attacks a relict, boreal pine species. Biodivers Conserv 13:493–500

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Book  Google Scholar 

  • Houska Tahadlova M, Mottl O, Jorge LR, Koane B, Novotny V, Sam K (2023) Trophic cascades in tropical rainforests: effects of vertebrate predator exclusion on arthropods and plants in Papua New Guinea. Biotropica 55:70–80

    Article  Google Scholar 

  • Hunter MD (2001) Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: experiments, life tables, and time-series analysis. Basic Appl Ecol 2:295–309

    Article  Google Scholar 

  • Janzen DHJE (1973) Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54:687–708

    Article  Google Scholar 

  • Jones KE, Mickleburgh SP, Sechrest W, Walsh AL (2009) Global overview of the conservation of Island bats: importance, challenges and opportunities. In: Fleming TH, Racey PA (eds) Evolution, ecology, and conservation of Island bats. University of Chicago Press, Chicago, IL, pp 496–530

    Google Scholar 

  • Karley A, Parker W, Pitchford J, Douglas A (2004) The mid-season crash in aphid populations: why and how does it occur? Ecol Entomol 29:383–388

    Article  Google Scholar 

  • Karp DS, Daily GC (2014) Cascading effects of insectivorous birds and bats in tropical coffee plantations. Ecology 95:1065–1074

    Article  PubMed  Google Scholar 

  • Keeler KH (1985) Extrafloral nectaries on plants in communities without ants: Hawaii. Oikos 44:407–414

    Article  Google Scholar 

  • Kier G et al (2009) A global assessment of endemism and species richness across Island and mainland regions. Proc Natl Acad Sci 106:9322–9327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koptur S (1985) Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology 66:1639–1650

    Article  Google Scholar 

  • Kueffer C, Kinney K (2017) What is the importance of islands to environmental conservation? Environ Conserv 44:311–322

    Article  Google Scholar 

  • Lay C, Linhart Y, Diggle P (2013) Variation among four populations of Erysimum Capitatum in phenotype, pollination and herbivory over an elevational gradient. Am Midl Nat 169:259–273

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Louda SM (1982) Distribution ecology: variation in plant recruitment over a gradient in relation to insect seed predation. Ecol Monogr 52:25–41

    Article  Google Scholar 

  • Marques ESDA, Price PW, Cobb NS (2000) Resource abundance and insect herbivore diversity on woody fabaceous desert plants. Environ Entomol 29:696–703

    Article  Google Scholar 

  • Martín-Queller E, Albert CH, Dumas PJ, Saatkamp A (2017) Islands, mainland, and terrestrial fragments: how isolation shapes plant diversity. Ecol Evol 7:6904–6917

    Article  PubMed  PubMed Central  Google Scholar 

  • Matías L, Jump AS (2015) Asymmetric changes of growth and reproductive investment herald altitudinal and latitudinal range shifts of two woody species. Glob Chang Biol 21:882–896

    Article  PubMed  Google Scholar 

  • Mazia CN, Chaneton EJ, Kitzberger T, Garibaldi LA (2009) Variable strength of top-down effects in Nothofagus forests: bird predation and insect herbivory during an ENSO event. Austral Ecol 34:359–367

    Article  Google Scholar 

  • McCain CM (2005) Elevational gradients in diversity of small mammals. Ecology 86:366–372

    Article  Google Scholar 

  • McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr 16:1–13

    Article  Google Scholar 

  • McCain CM (2009) Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18:346–360

    Article  Google Scholar 

  • McCain CM, Grytnes J-A (2010) Elevational gradients in species richness. In: Sons JW (ed) Encyclopedia of life sciences. John Wiley & Sons, Chichester

    Google Scholar 

  • Metcalfe DB et al (2014) Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol Lett 17:324–332

    Article  PubMed  Google Scholar 

  • Meyer CF, Kalko EK (2008) Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J Biogeogr 35:1711–1726

    Article  Google Scholar 

  • Mooney KA, Gruner DS, Barber NA, Van Bael SA, Philpott SM, Greenberg R (2010) Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants. Proc Natl Acad Sci U S A 107:7335–7340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira X, Castagneyrol B, Abdala-Roberts L, Berny-Mier, Teran JC, Timmermans BG, Bruun HH, Covelo F, Glauser G, Rasmann S, Tack AJ (2018) Latitudinal variation in plant chemical defences drives latitudinal patterns of leaf herbivory. Ecography 41:1124–1134

    Article  Google Scholar 

  • Moreira X, Castagneyrol B, García-Verdugo C, Abdala-Roberts L (2021) A meta-analysis of insularity effects on herbivory and plant defences. J Biogeogr 48:386–393

    Article  Google Scholar 

  • Morrison LW (2016) The ecology of ants (hymenoptera: Formicidae) on islands. Myrmecological News 23:1–14

    Google Scholar 

  • Munyai T, Foord S (2012) Ants on a mountain: spatial, environmental and habitat associations along an altitudinal transect in a Centre of endemism. J Insect Conserv 16:677–695

    Article  Google Scholar 

  • Nakamura M, Hina T, Nabeshima E, Hiura T (2008) Do spatial variation in leaf traits and herbivory within a canopy respond to selective cutting and fertilization? Can J For Res 38:1603–1610

    Article  Google Scholar 

  • Nilsson SG, Ebenman B (1981) Density changes and niche differences in Island and mainland willow warblers Phylloscopus trochilus at a lake in southern Sweden. Ornis Scand 12:62–67

    Article  Google Scholar 

  • Nyffeler M, ÅžekercioÄŸlu ÇH, Whelan CJ (2018) Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci Nat 105:47

    Article  Google Scholar 

  • Oksanen L, Oksanen T (2000) The logic and realism of the hypothesis of exploitation ecosystems. Am Nat 155:703–723

    Article  PubMed  Google Scholar 

  • Oksanen L, Oksanen T, Dahlgren J, Hambäck P, Ekerholm P, Lindgren Ã…, Olofsson J (2010) Islands as test of the green world hypothesis. In: Terborgh J, Estes J (eds) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, pp 163–178

    Google Scholar 

  • Olesen JM, Valido A (2003) Lizards as pollinators and seed dispersers: an Island phenomenon. Trends Ecol Evol 18:177–181

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    Article  CAS  PubMed  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104:1116–1125

    Article  CAS  Google Scholar 

  • Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, Notarnicola C, Palazzi E, Seibert P, Serafin S, Schöner W, Terzago S (2022) Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics 60:e2020RG000730

    Article  Google Scholar 

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316

    Article  Google Scholar 

  • Pough FH (1973) Lizard energetics and diet. Ecology 54:837–844

    Article  Google Scholar 

  • Pough FH (1980) The advantages of ectothermy for tetrapods. Am Nat 115:92–112

    Article  Google Scholar 

  • Poveda K, Martínez E, Kersch-Becker MF, Bonilla MA, Tscharntke T (2012) Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. J Appl Ecol 49:513–522

    Article  Google Scholar 

  • Preisser E (2007) Trophic structure. Encyclopedia Ecol 2008:3608–3616

    Google Scholar 

  • Rhoades DF (1979) Volution of plant chemical defense against herbivores. In: Rosenthal GA, Janzen DH (eds) Herbivores: their interaction with secondary plant metabolites. Academic Press, pp 4–54

    Google Scholar 

  • Ripple WJ, Larsen EJ, Renkin RA, Smith DW (2001) Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern range. Biol Conserv 102:227–234

    Article  Google Scholar 

  • Roels SM, Porter JL, Lindell CA (2018) Predation pressure by birds and arthropods on herbivorous insects affected by tropical forest restoration strategy. Restor Ecol 26:1203–1211

    Article  Google Scholar 

  • Roemer GW, Donlan CJ, Courchamp F (2002) Golden eagles, feral pigs, and insular carnivores: how exotic species turn native predators into prey. Proc Natl Acad Sci 99:791–796

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge university press

    Book  Google Scholar 

  • Roslin T et al (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744

    Article  CAS  PubMed  Google Scholar 

  • Rudolf VH, Rasmussen NL (2013) Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94:1046–1056

    Article  PubMed  Google Scholar 

  • Sadler JP (1999) Biodiversity on oceanic islands: a palaeoecological assessment. J Biogeogr 26:75–87

    Article  Google Scholar 

  • Sam K, Koane B, Jeppy S, Sykorova J, Novotny V (2017) Diet of land birds along an elevational gradient in Papua New Guinea. Sci Rep 7:44018

    Article  PubMed  PubMed Central  Google Scholar 

  • Sam K, Koane B, Novotny V (2015) Herbivore damage increases avian and ant predation of caterpillars on trees along a complete elevational forest gradient in Papua New Guinea. Ecography 38:293–300

    Article  Google Scholar 

  • Sam K, Koane B, Bardos DC, Jeppy S, Novotny V (2019) Species richness of birds along a complete rain forest elevational gradient in the tropics: habitat complexity and food resources matter. J Biogeogr 46:279–290

    Article  Google Scholar 

  • Sam K, Koane B, Sam L, Mrazova A, Segar S, Volf M, Moos M, Simek P, Sisol M, Novotny V (2020) Insect herbivory and herbivores of Ficus species along a rain forest elevational gradient in Papua New Guinea. Biotropica 52:263–276

    Article  Google Scholar 

  • Sam K, Tahadlova M, Freiberga I, Mrazova A, Toszogyova A, Sreekar R (2022) The impact of ants and vertebrate predators on arthropods and plants: a meta-analysis. bioRxiv

    Google Scholar 

  • Santos AM, Fontaine C, Quicke DL, Borges PA, Hortal J (2011) Are Island and mainland biotas different? Richness and level of generalism in parasitoids of a microlepidopteran in Macaronesia. Oikos 120:1256–1262

    Article  Google Scholar 

  • Sayre R et al (2019) A new 30 meter resolution global shoreline vector and associated global islands database for the development of standardized ecological coastal units. J Oper Oceanogr 12:S47–S56

    Google Scholar 

  • Schoener TW, Spiller DA (2010) Trophic cascades on islands. Trophic cascades: predators, prey, and the changing dynamics of nature: 179–202

    Google Scholar 

  • Shin B, Lee J-Y, Kim N-H, Choi S-W (2021) The relationship between resource abundance and insect herbivory on islands. PLoS One 16:e0256183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer M, Clark R, Lichter-Marck I, Johnson E, Mooney K (2017) Predatory birds and ants partition caterpillar prey by body size and diet breadth. J Anim Ecol 86:1363–1371

    Article  PubMed  Google Scholar 

  • Spiller DA, Schoener TW (1998) Lizards reduce spider species richness by excluding rare species. Ecology 79:503–516

    Article  Google Scholar 

  • Suzuki S, Kitayama K, S-i A, Takyu M, Kikuzawa K (2013) Annual leaf loss caused by folivorous insects in tropical rain forests on Mt. Kinabalu, Borneo. J For Res 18:353–360

    Article  CAS  Google Scholar 

  • Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecology 58:1007–1019

    Article  Google Scholar 

  • Terborgh J (2009) The trophic cascade on islands. In: Losos JB, Ricklefs RE (eds) The theory of Island biogeography revisited. Princeton University Press, pp 116–142

    Chapter  Google Scholar 

  • Terborgh J et al. (1999) The role of top carnivores in regulating terrestrial ecosystems. Continental conservation: scientific foundations of regional reserve networks: 39–64

    Google Scholar 

  • Terborgh JW (2015) Toward a trophic theory of species diversity. Proc Natl Acad Sci 112:11415–11422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toft CA, Schoener TW (1983) Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos 41:411–426

    Article  Google Scholar 

  • Tvardikova K, Novotny V (2012) Predation on exposed and leaf-rolling artificial caterpillars in tropical forests of Papua New Guinea. J Trop Ecol 28:331–341

    Article  Google Scholar 

  • Volf M et al (2020) Compound specific trends of chemical defences in Ficus along an elevational gradient reflect a complex selective landscape. J Chem Ecol 46:442–454

    Article  CAS  PubMed  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press

    Book  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA (2017) Island biogeography: taking the long view of nature’s laboratories. Science 357:eaam8326

    Article  PubMed  Google Scholar 

  • Whittaker RJ et al (2014) Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proc Natl Acad Sci 111:13709–13714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiescher PT, Pearce-Duvet J, Feener DH (2012) Assembling an ant community: species functional traits reflect environmental filtering. Oecologia 169:1063–1074

    Article  PubMed  Google Scholar 

  • Wilson EO, Regnier FE Jr (1971) The evolution of the alarm-defense system in the formicine ants. Am Nat 105:279–289

    Article  Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30:313–323

    Article  Google Scholar 

  • Wright SJ (1981) Extinction-mediated competition: the Anolis lizards and insectivorous birds of the West Indies. Am Nat 117:181–192

    Article  Google Scholar 

  • Zhang S, Zhang Y, Ma K (2016) Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J Ecol 104:1089–1095

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Inga Freiberga who assisted the collection of the data from literature. All authors are thankful for financial support from the University of South Bohemia and European Research Council Starting Grant, BABE No. 805189.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sam, K., Mrazova, A., Houska Tahadlova, M., Kollross, J., Maraia, H. (2024). Impact of Predators on Arthropod Herbivores and Herbivory along Mountain Ranges on Islands Versus Mainland. In: Moreira, X., Abdala-Roberts, L. (eds) Ecology and Evolution of Plant-Herbivore Interactions on Islands. Ecological Studies, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-031-47814-7_11

Download citation

Publish with us

Policies and ethics