Skip to main content

The Ontology for Conceptual Characterization of Ontologies

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2023)

Abstract

Ontologies as computational artifacts have been seen as a solution to FAIRness due to their characteristics, applications, and semantic competencies. Conceptualizations of complex and vast domains can be fragmented in different ways and can compose what is known as ontology networks. Thus, the ontologies produced can relate to each other in many different ways, making the ontological artifacts themselves subject to FAIRness. The problem is that in the Ontology Engineering Process, stakeholders take different perspectives of the conceptualizations, and this causes ontologies to have biases that are sometimes more ontological and sometimes more related to the domain. Besides, usually, Ontology Engineers provide well-grounded reference ontologies, but rarely are they implemented. At the same time, Domain Specialists produce operational ontologies storing large amounts of valid data but with naive ontological support or even without any. We address this problem of lack of consensual conceptualization by proposing a reference conceptual model (O4OA) that considers ontological-related and domain-related perspectives, knowledge, and commitment necessary to facilitate the process of Ontological Analysis, including the analysis of ontologies composing an ontology network. Indeed, O4OA is a (meta)ontology grounded in the Unified Foundational Ontology (UFO) and supported by well-known ontological classification standards, guides, and FAIR principles. We demonstrate how this approach can suitably promote conceptual clarification and terminological harmonization in this area through our framework proposal and its case studies.

The authors are grateful to the members of the PROS Center Genome group and Ontology from UPV and Conceptual Modeling Research Group (NEMO) from UFES for fruitful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.omg.org/spec/OCL/About-OCL/.

  2. 2.

    Readers may find the complete description of O4OA competence questions at the following repository: https://bfmartins.gitlab.io/o4oa/.

  3. 3.

    Part of the elicitation process happened during the COVID-2019 pandemic, so the remote strategy was mandatory.

  4. 4.

    Our research is part of a research consortium to develop well-grounded knowledge graphs through a comprehensive solution within a project in collaboration with teams from several academic institutions, and Accenture LTD.

  5. 5.

    Which is more general than Domain, Task, and Application ontologies, but more specific than Foundational Ontologies.

  6. 6.

    https://plato.stanford.edu/entries/concepts/.

  7. 7.

    The adoption of microservices allows API scaling adding reasoning capabilities, for this future possibilities.

  8. 8.

    It is important to point out that we adopted an Agile Development approach in order to provide fast initial results meanwhile being scaled.

  9. 9.

    SSN, oneM2M, and SAREF are Core Ontologies in the sense of [22, 65].

  10. 10.

    In O4OA, the relations and concepts of ontologies are data instances.

References

  1. de Almeida Falbo, R.: Sabio: systematic approach for building ontologies. In: Onto.Com/odise@ Fois (2014)

    Google Scholar 

  2. Amdouni, E., Bouazzouni, S., Jonquet, C.: O’faire: ontology fairness evaluator in the agroportal semantic resource repository. In: The Semantic Web: ESWC 2022 Satellite Events: Hersonissos, Crete, Greece, 29 May–2 June 2022, Proceedings, pp. 89–94. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-11609-4_17

  3. Amdouni, E., Jonquet, C.: FAIR or FAIRer? an integrated quantitative FAIRness assessment grid for semantic resources and ontologies. In: Garoufallou, E., Ovalle-Perandones, M.-A., Vlachidis, A. (eds.) MTSR 2021. CCIS, vol. 1537, pp. 67–80. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98876-0_6

    Chapter  Google Scholar 

  4. Atkinson, R., García-Castro, R., Lieberman, J., Stadler, C.: Semantic sensor network ontology. Technical Report. OGC 16–079, World Wide Web Consortium (2017)

    Google Scholar 

  5. Bauer, M., et al.: Towards semantic interoperability standards based on ontologies. In: AIOTI White paper (2019)

    Google Scholar 

  6. Benevides, A.B., Guizzardi, G.: A model-based tool for conceptual modeling and domain ontology engineering in OntoUML. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2009. LNBIP, vol. 24, pp. 528–538. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01347-8_44

    Chapter  Google Scholar 

  7. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A., et al.: Validating modal aspects of ontouml conceptual models using automatically generated visual world structures. J. Univ. Comput. Sci. 16(20), 2904–2933 (2010)

    MATH  Google Scholar 

  8. Boeckhout, M., Zielhuis, G.A., Bredenoord, A.L.: The fair guiding principles for data stewardship: fair enough? Eur. J. Hum. Genet. 26(7), 931–936 (2018)

    Article  Google Scholar 

  9. Borges Ruy, F., de Almeida Falbo, R., Perini Barcellos, M., Dornelas Costa, S., Guizzardi, G.: SEON: a software engineering ontology network. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 527–542. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_34

    Chapter  Google Scholar 

  10. Borgo, S., Masolo, C.: Ontological Foundations of DOLCE, pp. 279–295. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_13

  11. Daniele, L., Garcia-Castro, R., Lefrançois, M., Poveda-Villalon, M.: Smart applications reference ontology (saref) (2019). Accessed Aug 2023

    Google Scholar 

  12. d’Aquin, M., et al.: Watson: a gateway for the semantic web (2007)

    Google Scholar 

  13. Duarte, B.B., Falbo, R.A., Guizzardi, G., Guizzardi, R.S.S., Souza, V.E.S.: Towards an ontology of software defects, errors and failures. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 349–362. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5_25

    Chapter  Google Scholar 

  14. Euzenat, J.: Revision in networks of ontologies. Artif. Intell. 228, 195–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fensel, D.: Ontologies, pp. 11–18. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04396-7_2

  16. García S, A., Guizzardi, G., Pastor, O., Storey, V.C., Bernasconi, A.: An ontological characterization of a conceptual model of the human genome. In: Intelligent Information Systems: CAiSE Forum 2022, Leuven, Belgium, 6–10 June 2022, Proceedings, pp. 27–35. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07481-3_4

  17. Giunchiglia, F., Zaihrayeu, I.: Lightweight ontologies. University of Trento, Technical report (2007)

    Google Scholar 

  18. Gómez-Pérez, A., Corcho, O.: Ontology languages for the semantic web. IEEE Intell. Syst. 17(1), 54–60 (2002)

    Article  Google Scholar 

  19. Gomez-Perez, A., Fernández-López, M., Corcho, O.: Ontological Engineering: With Examples from the Areas of Knowledge Management, E-Commerce and the Semantic Web. Springer, Heidelberg (2004). https://doi.org/10.1007/b97353

  20. Gruninger, M.: Methodology for the design and evaluation of ontologies. In: International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  21. Gruninger, M.: Designing and evaluating generic ontologies. In: 12th European Conference of Artificial Intelligence, vol. 1, pp. 53–64. Citeseer (1996)

    Google Scholar 

  22. Guarino, N.: Formal ontology in information systems. In: Proceedings of the 1st International Conference, pp. 6–8. IOS Press, Trento (1998)

    Google Scholar 

  23. Guarino, N.: The ontological level. In: Philosophy and the Cognitive Sciences (1994)

    Google Scholar 

  24. Guarino, N.: The ontological level: Revisiting 30 years of knowledge representation. In: Conceptual Modeling: Foundations and Applications, pp. 52–67 (2009)

    Google Scholar 

  25. Guarino, N., Poli, R.: The role of formal ontology in the information technnology. Int. J. Hum Comput Stud. 43(5–6), 623–965 (1995)

    Article  Google Scholar 

  26. Guizzardi, G.: The role of foundational ontology for conceptual modeling and domain ontology representation, keynote paper. In: 7th International Baltic Conference on Databases and Information Systems (DB &IS). IEEE Press, Vilnius (2006)

    Google Scholar 

  27. Guizzardi, G., Masolo, C., Borgo, S.: In the defense of a trope-based ontology for conceptual modeling: an example with the foundations of attributes, weak entities and datatypes. In: 25th International Conference on Conceptual Modeling, Berlin (2006)

    Google Scholar 

  28. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT, Centre for Telematics and Information Technology (2005)

    Google Scholar 

  29. Guizzardi, G.: Modal aspects of object types and part-whole relations and the de re/de dicto distinction. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 5–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72988-4_2

    Chapter  Google Scholar 

  30. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. Front. Artif. Intell. Appl. 155, 18 (2007)

    Google Scholar 

  31. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual modeling revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 94–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02144-2_12

    Chapter  Google Scholar 

  32. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 13–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_2

    Chapter  Google Scholar 

  33. Guizzardi, G.: Logical, ontological and cognitive aspects of object types and cross-world identity with applications to the theory of conceptual spaces. In: Zenker, F., Gärdenfors, P. (eds.) Applications of Conceptual Spaces. SL, vol. 359, pp. 165–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15021-5_9

    Chapter  MATH  Google Scholar 

  34. Guizzardi, G.: Ontology, ontologies and the “I" of FAIR. Data Intell. 2, 181–191 (2020)

    Article  Google Scholar 

  35. Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: An ontology-based approach for evaluating the domain appropriateness and comprehensibility appropriateness of modeling languages. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS, vol. 3713, pp. 691–705. Springer, Heidelberg (2005). https://doi.org/10.1007/11557432_51

    Chapter  Google Scholar 

  36. Guizzardi, G., Wagner, G.: What’s in a relationship: an ontological analysis. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_8

    Chapter  Google Scholar 

  37. Hartmann, J., Sure, Y., Haase, P., Palma, R., Suarez-Figueroa, M.: OMV-ontology metadata vocabulary. In: ISWC, vol. 3729 (2005)

    Google Scholar 

  38. Hele-Mai, H., Tanel-Lauri, L.: A survey of concept-based information retrieval tools on the web. In: Proceedings of the 5thEast-European Conference AD BIS, pp. 29–41 (2001)

    Google Scholar 

  39. Hemberg, E., et al.: Linking threat tactics, techniques, and patterns with defensive weaknesses, vulnerabilities and affected platform configurations for cyber hunting (2021)

    Google Scholar 

  40. ISO Central Secretary: Information technology - security techniques - guidelines for cybersecurity. Standard ISO/IEC 27032:2012. International Organization for Standardization, Geneva (2012)

    Google Scholar 

  41. ISO Central Secretary: Information technology - security techniques - information security management systems - overview and vocabulary. Standard ISO/IEC 27000:2018–02, International Organization for Standardization, Geneva (2018)

    Google Scholar 

  42. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT press, Cambridge (2012)

    Google Scholar 

  43. Jacobsen, A., et al.: FAIR principles: interpretations and implementation considerations. Data Intell. 2(1–2), 10–29 (2020). https://doi.org/10.1162/dint_r_00024

  44. Jonquet, C., Toulet, A., Dutta, B., Emonet, V.: Harnessing the power of unified metadata in an ontology repository: the case of agroportal. J. Data Semant. 7(4), 191–221 (2018)

    Article  Google Scholar 

  45. Jurisica, I., Mylopoulos, J., Yu, E.: Using ontologies for knowledge management: an information systems perspective. In: Proceedings of the Annual Meeting-American Society For Information Science, vol. 36, pp. 482–496. Information Today; 1998 (1999)

    Google Scholar 

  46. Kripke, S.A.: Naming and Necessity. Harvard University Press, Cambridge (1980)

    Google Scholar 

  47. Lassila, O., McGuinness, D.: The role of frame-based representation on the semantic web. Linköping Electron. Articles Comput. Inf. Sci. 6(5), 2001 (2001)

    Google Scholar 

  48. Martins, B.F., Serrano, L., Reyes, J.F., Panach, J.I., Pastor, O.: Towards the consolidation of cybersecurity standardized definitions: a tool for ontological analysis. In: Proceedings of the XXIV Iberoamerican Conference on Software Engineering, CIbSE 2021, San José, Costa Rica, 2021, pp. 290–303. Curran Associates (2021)

    Google Scholar 

  49. Martins, B.F., Serrano, L., Reyes, J.F., Panach, J.I., Pastor, O., Rochwerger, B.: Conceptual characterization of cybersecurity ontologies. In: Grabis, J., Bork, D. (eds.) PoEM 2020. LNBIP, vol. 400, pp. 323–338. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63479-7_22

    Chapter  Google Scholar 

  50. Martins, B.F., Reyes Román, J.F., Pastor, O., Hadad, M.: Improving conceptual domain characterization in ontology networks. In: Research Challenges in Information Science: 17th International Conference, RCIS 2023, Corfu, Greece, 23–26 May 2023, Proceedings, pp. 187–202. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-33080-3_12

  51. Martins, B.F., et al.: A framework for conceptual characterization of ontologies and its application in the cybersecurity domain. Softw. Syst. Model. 21(4), 1437–1464 (2022)

    Article  Google Scholar 

  52. Mazimwe, A., Hammouda, I., Gidudu, A.: Implementation of fair principles for ontologies in the disaster domain: a systematic literature review. ISPRS Int. J. Geo Inf. 10(5), 324 (2021)

    Article  Google Scholar 

  53. Mizoguchi, R., Ikeda, M.: Towards ontology engineering. J.-Jpn. Soc. Artif. Intell. 13, 9–10 (1998)

    Google Scholar 

  54. Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L.O.B., Wilkinson, M.D.: Cloudy, increasingly fair; revisiting the fair data guiding principles for the European open science cloud. Inf. Serv. Use 37(1), 49–56 (2017)

    Google Scholar 

  55. Murdock, P., et al.: Semantic interoperability for the Web of Things. Ph.D. thesis, Dépt. Réseaux et Service Multimédia Mobiles (Institut Mines-Télécom-Télécom (2016)

    Google Scholar 

  56. Ítalo Oliveira, E.G., et al.: Boosting D3FEND: ontological analysis and recommendations. In: Formal Ontology in Information Systems. IOS Press, Nieuwe Hemweg (2023)

    Google Scholar 

  57. Oliveira, Í., Fumagalli, M., Prince Sales, T., Guizzardi, G.: How FAIR are security core ontologies? a systematic mapping study. In: Cherfi, S., Perini, A., Nurcan, S. (eds.) RCIS 2021. LNBIP, vol. 415, pp. 107–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75018-3_7

    Chapter  Google Scholar 

  58. oneM2M Partners: ONEM2M TECHNICAL SPECIFICATION. Technical Report. TS-0012-V3.7.3, oneM2M (2019). https://www.onem2m.org/images/pdf/TS-0012-Base_Ontology-V3_7_3.pdf. type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC)

  59. Pastor, O.: Diseño y Desarrollo de un Entorno de Producción Automática de Software basado en el modelo orientado a Objetos. Ph.D. thesis, Tesis doctoral dirigida por Isidro Ramos, DSIC, Universitat Politècnica de València (1992)

    Google Scholar 

  60. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-method approach for information systems modeling: from object-oriented conceptual modeling to automated programming. Inf. Syst. 26(7), 507–534 (2001). https://doi.org/10.1016/S0306-4379(01)00035-7. http://www.sciencedirect.com/science/article/pii/S0306437901000357

  61. Simperl, E., Bürger, T., Hangl, S., Wörgl, S., Popov, I.: Ontocom: a reliable cost estimation method for ontology development projects. J. Web Semant. 16, 1–16 (2012)

    Article  Google Scholar 

  62. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  MATH  Google Scholar 

  63. Uschold, M., Gruninger, M.: Ontologies and semantics for seamless connectivity. ACM SIGMOD Rec. 33(4), 58–64 (2004)

    Article  Google Scholar 

  64. Uschold, M., Gruninger, M., et al.: Ontologies: principles, methods and applications. Technical Report-University of Edinburgh Artificial Intelligence Applications Institute Aiai TR (1996)

    Google Scholar 

  65. Van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies in kbs development. Int. J. Hum.-Comput. Stud., 183–292 (1997)

    Google Scholar 

  66. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has financial support of Accenture LTD with project Digital Knowledge Graph – Adaptable Analytics API, Generalitat Valenciana with the project CoMoDiD (CIPROM/2021/023), Spanish State Research Agency with projects DELFOS (PDC2021-121243-I00), SREC (PID2021-123824OB-I00), MICIN/AEI/10.13039/501 100011033, and co-financed by the European Union Next Generation EU/PRTR with ERDF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beatriz Franco Martins or Oscar Pastor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, B.F., Guizzardi, R., Román, J.F.R., Hadad, M., Pastor, O. (2023). The Ontology for Conceptual Characterization of Ontologies. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds) Conceptual Modeling. ER 2023. Lecture Notes in Computer Science, vol 14320. Springer, Cham. https://doi.org/10.1007/978-3-031-47262-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47262-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47261-9

  • Online ISBN: 978-3-031-47262-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics