Skip to main content

Recent Advances in RNA m6A Modification in Solid Tumors and Tumor Immunity

  • Chapter
  • First Online:
Epigenetics in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 190))

  • 431 Accesses

Abstract

An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data Availability

Data from this study are available from the corresponding author upon request.

References

  1. Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196

    Google Scholar 

  2. Johansson CH, Brage SE (2014) BRAF inhibitors in cancer therapy. Pharmacol Ther 142(2):176–182

    Google Scholar 

  3. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D et al (2002) Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer 38 Suppl 5:S19–27

    Google Scholar 

  4. Tang PA, Tsao Ms, Moore MJ (2006) A review of erlotinib and its clinical use. Expert Opin Pharmacother 7(2):177–193

    Google Scholar 

  5. Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12(1):31–46

    Article  CAS  PubMed  Google Scholar 

  6. Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74(4):640–650

    Google Scholar 

  7. Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206

    Article  CAS  PubMed  Google Scholar 

  8. Motorin Y, Helm M (2011) RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2(5):611–631

    Google Scholar 

  9. Shima H, Igarashi K (2020) N1–methyladenosine (m1A) RNA modification: the key to ribosome control. J Biochem 167(6):535–539

    Google Scholar 

  10. Barbieri I, Kouzarides T (2020) Role of RNA modifications in cancer. Nature Reviews Cancer 20(6):303–322

    Google Scholar 

  11. Nombela P, Miguel-López B, Blanco S (2021) The role of m6A, m5C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer 20(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci USA 71(10):3971–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roost C, Lynch SR, Batista PJ, Qu K, Chang HY, Kool ET (2015) Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J Am Chem Soc 137(5):2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149(7):1635–1646

    Google Scholar 

  15. Liu J, Yue Y, Han D et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology 10(2):93–95

    Google Scholar 

  16. Jia G, Fu YE, Zhao XU, Dai Q et al (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nature Chemical Biology 7(12):885–887

    Google Scholar 

  17. Zheng G, Dahl JA, Niu Y, Fedorcsak P et al (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49(1):18–29

    Google Scholar 

  18. Liao S, Sun H, Xu C (2018) YTH domain: a family of N(6)-methyladenosine (m(6)A) readers. Genomics Proteomics Bioinformatics 16(2):99–107

    Google Scholar 

  19. Esteve-Puig R, Bueno-Costa A, Esteller M (2020) Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 474:127–137

    Google Scholar 

  20. Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169(7):1187–1200

    Google Scholar 

  21. Boo SH, Kim YK (2020) The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 52(3):400–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang M, Zhai Y, Zhang S, Dai X, Li Z (2020) Roles of N6-methyladenosine (m(6)A) in stem cell fate decisions and early embryonic development in mammals. Frontiers in Cell and Developmental Biology 8

    Google Scholar 

  23. Min KW, Zealy RW, Davila S et al (2018) Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability. Aging Cell 17(3):e12753

    Google Scholar 

  24. Wang H, Xu B, Shi J (2020) N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene 722:144076

    Article  CAS  PubMed  Google Scholar 

  25. Xie J, Ba J, Zhang M, Wan Y, Jin Z, Yao Y (2021) The m6A methyltransferase METTL3 promotes the stemness and malignant progression of breast cancer by mediating m6A modification on SOX2. J Buon 26(2):444–449

    PubMed  Google Scholar 

  26. Xu LM, Zhang J, Ma Y et al (2022) MicroRNA-135 inhibits initiation of epithelial-mesenchymal transition in breast cancer by targeting ZNF217 and promoting m6A modification of NANOG. Oncogene 41(12):1742–1751

    Article  CAS  PubMed  Google Scholar 

  27. Zhao C, Ling X, Xia Y, Yan B, Guan Q (2021) The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int 21(1):441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen F, Chen Z, Guan T et al (2021) N(6)-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Cancer Res 81(11):2847–2860

    Article  PubMed  Google Scholar 

  29. Shi Y, Zheng C, Jin Y et al (2020) Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation. Front Oncol 10:1126

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu L, Liu X, Dong Z et al (2019) N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival. J Cancer 10(22):5447–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qian JY, Gao J, Sun X et al (2019) KIAA1429 acts as an oncogenic factor in breast cancer by regulating CDK1 in an N6-methyladenosine-independent manner. Oncogene 38(33):6123–6141

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Dai XY, Qian JY et al (2022) SMC1A regulated by KIAA1429 in m6A-independent manner promotes EMT progress in breast cancer. Mol Ther Nucleic Acids. 27:133–146

    Article  CAS  PubMed  Google Scholar 

  33. Xiao H, Fan X, Zhang R, Wu G (2021) Upregulated N6-methyladenosine RNA in peripheral blood: potential diagnostic biomarker for breast cancer. Cancer Res Treat 53(2):399–408

    Article  CAS  PubMed  Google Scholar 

  34. Peng F, Xu J, Cui B et al (2021) Oncogenic AURKA-enhanced N(6)-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res 31(3):345–361

    Article  CAS  PubMed  Google Scholar 

  35. Niu Y, Lin Z, Wan A et al (2019) RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer 18(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Ye S, Zhang N et al (2020) The FTO/miR-181b-3p/ARL5B signaling pathway regulates cell migration and invasion in breast cancer. Cancer Commun (Lond) 40(10):484–500

    Article  PubMed  Google Scholar 

  37. Sun Y, Dong D, Xia Y, Hao L, Wang W, Zhao C (2022) YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis 13(3):230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen H, Yu Y, Yang M et al (2022) YTHDF1 promotes breast cancer progression by facilitating FOXM1 translation in an m6A-dependent manner. Cell Biosci 12(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anita R, Paramasivam A, Priyadharsini JV, Chitra S (2020) The m6A readers YTHDF1 and YTHDF3 aberrations associated with metastasis and predict poor prognosis in breast cancer patients. Am J Cancer Res 10(8):2546–2554

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin Y, Jin X, Nie Q et al (2022) YTHDF3 facilitates triple-negative breast cancer progression and metastasis by stabilizing ZEB1 mRNA in an m(6)A-dependent manner. Ann Transl Med 10(2):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang G, Shi L, Ye Y et al (2020) YTHDF3 induces the translation of m(6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell 38(6):857-871.e857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou K, Sun Y, Dong D, Zhao C, Wang W (2021) EMP3 negatively modulates breast cancer cell DNA replication, DNA damage repair, and stem-like properties. Cell Death Dis 12(9):844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Einstein JM, Perelis M, Chaim IA et al (2021) Inhibition of YTHDF2 triggers proteotoxic cell death in MYC-driven breast cancer. Mol Cell 81(15):3048–3064.e3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huo FC, Zhu ZM, Zhu WT, Du QY, Liang J, Mou J (2021) METTL3-mediated m(6)A methylation of SPHK2 promotes gastric cancer progression by targeting KLF2. Oncogene 40(16):2968–2981

    Article  CAS  PubMed  Google Scholar 

  45. Jiang L, Chen T, Xiong L et al (2020) Knockdown of m6A methyltransferase METTL3 in gastric cancer cells results in suppression of cell proliferation. Oncol Lett 20(3):2191–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yue B, Song C, Yang L et al (2019) METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 18(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  47. Na T-Y, Schecterson L, Mendonsa AM, Gumbiner BM (2020) The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc Natl Acad Sci 117(11):5931–5937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Q, Chen C, Ding Q et al (2020) METTL3-mediated m(6)A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 69(7):1193–1205

    Article  CAS  PubMed  Google Scholar 

  49. Liu Y, Zhai E, Chen J et al (2022) m(6) A-mediated regulation of PBX1-GCH1 axis promotes gastric cancer proliferation and metastasis by elevating tetrahydrobiopterin levels. Cancer Commun (Lond) 42(4):327–344

    Google Scholar 

  50. Gonçalves DA, Jasiulionis MG, Melo FHM (2021) The role of the BH4 cofactor in nitric oxide synthase activity and cancer progression: two sides of the same coin. Int J Mol Sci 22(17)

    Google Scholar 

  51. Miao R, Dai CC, Mei L et al (2020) KIAA1429 regulates cell proliferation by targeting c-Jun messenger RNA directly in gastric cancer. J Cell Physiol 235(10):7420–7432

    Article  CAS  PubMed  Google Scholar 

  52. Wang XK, Zhang YW, Wang CM et al (2021) METTL16 promotes cell proliferation by up-regulating cyclin D1 expression in gastric cancer. J Cell Mol Med 25(14):6602–6617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu H, Zhao K, Zeng H et al (2021) N(6)-methyladenosine (m(6)A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed Pharmacother 133:111075

    Article  CAS  PubMed  Google Scholar 

  54. Liu X, Xiao M, Zhang L et al (2021) The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal 35(3):e23655

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Zheng D, Wang F, Xu Y, Yu H, Zhang H (2019) Expression of demethylase genes, FTO and ALKBH1, is associated with prognosis of gastric cancer. Dig Dis Sci 64(6):1503–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang Z, Jiang X, Zhang Z et al (2021) HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the development of gastric cancer. Cancer Gene Ther 28(1–2):141–155

    Article  CAS  PubMed  Google Scholar 

  57. Guo C, Chu H, Gong Z et al (2021) HOXB13 promotes gastric cancer cell migration and invasion via IGF-1R upregulation and subsequent activation of PI3K/AKT/mTOR signaling pathway. Life Sci 278:119522

    Article  CAS  PubMed  Google Scholar 

  58. Wang D, Qu X, Lu W et al (2021) N(6)-methyladenosine RNA demethylase FTO promotes gastric cancer metastasis by down-regulating the m6A methylation of iTGB1. Front Oncol 11:681280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou Y, Wang Q, Deng H et al (2022) N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m(6)A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis 13(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang J, Guo S, Piao HY et al (2019) ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem 75(3):379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu Y, Gong C, Li Z et al (2022) Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer 21(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu D, Xia AD, Wu LP, Li S, Zhang K, Chen D (2022) IGF2BP2 promotes gastric cancer progression by regulating the IGF1R-RhoA-ROCK signaling pathway. Cell Signal 94:110313

    Article  CAS  PubMed  Google Scholar 

  63. Pi J, Wang W, Ji M et al (2021) YTHDF1 promotes gastric carcinogenesis by controlling translation of FZD7. Cancer Res 81(10):2651–2665

    Article  CAS  PubMed  Google Scholar 

  64. Chen XY, Liang R, Yi YC et al (2021) The m(6)A reader YTHDF1 facilitates the tumorigenesis and metastasis of gastric cancer via USP14 translation in an m(6)A-dependent manner. Front Cell Dev Biol. 9:647702

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shen X, Zhao K, Xu L et al (2020) YTHDF2 inhibits gastric cancer cell growth by regulating FOXC2 signaling pathway. Front Genet 11:592042

    Article  CAS  PubMed  Google Scholar 

  66. Lin S, Choe J, Du P, Triboulet R, Gregory RI (2016) The m(6)A methyltransferase METTL3 promotes translation in human cancer Cells. Mol Cell 62(3):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Liu S, Zhao T, Dang C (2021) METTL3‑mediated m6A modification of Bcl‑2 mRNA promotes non‑small cell lung cancer progression. Oncol Rep 46(2)

    Google Scholar 

  68. Wanna-Udom S, Terashima M, Lyu H et al (2020) The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun 524(1):150–155

    Article  CAS  PubMed  Google Scholar 

  69. Xu Y, Lv D, Yan C et al (2022) METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int 22(1):11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu Y, Chang N, Zhang Y et al (2021) METTL3-mediated m(6)A mRNA modification of FBXW7 suppresses lung adenocarcinoma. J Exp Clin Cancer Res 40(1):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shen Y, Li C, Zhou L, Huang JA (2021) G protein-coupled oestrogen receptor promotes cell growth of non-small cell lung cancer cells via YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 signalling. J Cell Mol Med 25(1):284–296

    Article  CAS  PubMed  Google Scholar 

  72. Yang F, Yuan WQ, Li J, Luo YQ (2021) Knockdown of METTL14 suppresses the malignant progression of non-small cell lung cancer by reducing Twist expression. Oncol Lett 22(6):847

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mao J, Qiu H, Guo L (2021) LncRNA HCG11 mediated by METTL14 inhibits the growth of lung adenocarcinoma via IGF2BP2/LATS1. Biochem Biophys Res Commun 580:74–80

    Article  CAS  PubMed  Google Scholar 

  74. Xu Y, Chen Y, Yao Y et al (2021) VIRMA contributes to non-small cell lung cancer progression via N(6)-methyladenosine-dependent DAPK3 post-transcriptional modification. Cancer Lett 522:142–154

    Article  CAS  PubMed  Google Scholar 

  75. Zhao W, Xie Y (2021) KIAA1429 promotes the progression of lung adenocarcinoma by regulating the m6A level of MUC3A. Pathol Res Pract 217:153284

    Article  CAS  PubMed  Google Scholar 

  76. Guo J, Wu Y, Du J et al (2018) Deregulation of UBE2C-mediated autophagy repression aggravates NSCLC progression. Oncogenesis 7(6):49

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu Z, Qian Q, Zhao X, Ma L, Chen P (2020) N(6)-methyladenosine ALKBH5 promotes non-small cell lung cancer progress by regulating TIMP3 stability. Gene 731:144348

    Article  CAS  PubMed  Google Scholar 

  78. Tsuchiya K, Yoshimura K, Iwashita Y et al (2022) m(6)A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther 29(10):1355–1372

    Google Scholar 

  79. Zhang D, Ning J, Okon I et al (2021) Suppression of m6A mRNA modification by DNA hypermethylated ALKBH5 aggravates the oncological behavior of KRAS mutation/LKB1 loss lung cancer. Cell Death Dis 12(6):518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li J, Han Y, Zhang H et al (2019) The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem Biophys Res Commun 512(3):479–485

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Li M, Zhang L, Chen Y, Zhang S (2021) m6A demethylase FTO induces NELL2 expression by inhibiting E2F1 m6A modification leading to metastasis of non-small cell lung cancer. Mol Ther Oncolytics 21:367–376

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ding Y, Qi N, Wang K et al (2020) FTO facilitates lung adenocarcinoma cell progression by activating cell migration through mRNA demethylation. Onco Targets Ther 13:1461–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang X, Shao F, Guo D et al (2021) WNT/β-catenin-suppressed FTO expression increases m(6)A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis 12(5):462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lou X, Ning J, Liu W et al (2021) YTHDF1 promotes cyclin B1 translation through m(6)A modulation and contributes to the poor prognosis of lung adenocarcinoma with KRAS/TP53 co-mutation. Cells 10(7)

    Google Scholar 

  85. Sheng H, Li Z, Su S et al (2020) YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation. Carcinogenesis 41(5):541–550

    Article  CAS  PubMed  Google Scholar 

  86. Li Y, Sheng H, Ma F et al (2021) RNA m(6)A reader YTHDF2 facilitates lung adenocarcinoma cell proliferation and metastasis by targeting the AXIN1/Wnt/β-catenin signaling. Cell Death Dis 12(5):479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao T, Wang M, Zhao X et al (2022) YTHDF2 inhibits the migration and invasion of lung adenocarcinoma by negatively regulating the FAM83D-TGFβ1-SMAD2/3 pathway. Front Oncol 12:763341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang X, Liu C, Zhang S et al (2021) N(6)-methyladenosine modification of MALAT1 promotes metastasis via reshaping nuclear speckles. Dev Cell 56(5):702-715.e708

    Article  CAS  PubMed  Google Scholar 

  89. Ma L, Zhang X, Yu K et al (2021) Targeting SLC3A2 subunit of system X(C)(-) is essential for m(6)A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma. Free Radic Biol Med 168:25–43

    Article  CAS  PubMed  Google Scholar 

  90. Daher B, Vučetić M, Pouysségur J (2020) Cysteine depletion, a key action to challenge cancer cells to ferroptotic cell death. Front Oncol 10:723

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ma L, Chen T, Zhang X et al (2021) The m(6)A reader YTHDC2 inhibits lung adenocarcinoma tumorigenesis by suppressing SLC7A11-dependent antioxidant function. Redox Biol 38:101801

    Article  CAS  PubMed  Google Scholar 

  92. Shen C, Xuan B, Yan T et al (2020) M(6)A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer 19(1):72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen H, Gao S, Liu W et al (2021) RNA N(6)-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 160(4):1284-1300.e1216

    Article  CAS  PubMed  Google Scholar 

  94. Zheng Y, Wang Y, Liu Y et al (2021) N6-methyladenosine modification of PTTG3P contributes to colorectal cancer proliferation via YAP1. Front Oncol 11:669731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li T, Hu PS, Zuo Z et al (2019) METTL3 facilitates tumor progression via an m(6)A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer 18(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pan J, Liu F, Xiao X et al (2022) METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res 41(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiang S, Liang X, Yin S, Liu J, Xiang Z (2020) N6-methyladenosine methyltransferase METTL3 promotes colorectal cancer cell proliferation through enhancing MYC expression. Am J Transl Res. 12(5):1789–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang X, Zhang S, He C et al (2020) METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 19(1):46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen X, Xu M, Xu X et al (2020) METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer 19(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang H, Wei W, Zhang ZY et al (2021) TCF4 and HuR mediated-METTL14 suppresses dissemination of colorectal cancer via N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis 13(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ma L, Lin Y, Sun SW et al (2022) KIAA1429 is a potential prognostic marker in colorectal cancer by promoting the proliferation via downregulating WEE1 expression in an m6A-independent manner. Oncogene 41(5):692–703

    Article  CAS  PubMed  Google Scholar 

  102. Zhou Y, Pei Z, Maimaiti A et al (2022) M(6)A methyltransferase KIAA1429 acts as an oncogenic factor in colorectal cancer by regulating SIRT1 in an m(6)A-dependent manner. Cell Death Discov. 8(1):83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Z, Mei Y, Hou M (2021) Knockdown RBM15 inhibits colorectal cancer cell proliferation and metastasis via N6-methyladenosine (m6A) modification of MyD88 mRNA. Cancer Biother Radiopharm

    Google Scholar 

  104. Wu X, Dai M, Li J et al (2021) M(6)A demethylase ALKBH5 inhibits cell proliferation and the metastasis of colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis. Am J Transl Res 13(10):11209–11222

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang P, Wang Q, Liu A, Zhu J, Feng J (2020) ALKBH5 holds prognostic values and inhibits the metastasis of colon cancer. Pathol Oncol Res 26(3):1615–1623

    Article  CAS  PubMed  Google Scholar 

  106. Ruan DY, Li T, Wang YN et al (2021) FTO downregulation mediated by hypoxia facilitates colorectal cancer metastasis. Oncogene 40(33):5168–5181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsuruta N, Tsuchihashi K, Ohmura H et al (2020) RNA N6-methyladenosine demethylase FTO regulates PD-L1 expression in colon cancer cells. Biochem Biophys Res Commun 530(1):235–239

    Article  CAS  PubMed  Google Scholar 

  108. Bai Y, Yang C, Wu R et al (2019) YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front Oncol 9:332

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang S, Gao S, Zeng Y et al (2022) N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162(4):1183–1196

    Article  CAS  PubMed  Google Scholar 

  110. Nishizawa Y, Konno M, Asai A et al (2018) Oncogene c-Myc promotes epitranscriptome m(6)A reader YTHDF1 expression in colorectal cancer. Oncotarget 9(7):7476–7486

    Article  PubMed  Google Scholar 

  111. Cui J, Tian J, Wang W et al (2021) IGF2BP2 promotes the progression of colorectal cancer through a YAP-dependent mechanism. Cancer Sci 112(10):4087–4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang Z, Wang T, Wu D, Min Z, Tan J, Yu B (2020) RNA N6-methyladenosine reader IGF2BP3 regulates cell cycle and angiogenesis in colon cancer. J Exp Clin Cancer Res 39(1):203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen M, Wei L, Law CT et al (2018) RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67(6):2254–2270

    Article  CAS  PubMed  Google Scholar 

  114. Wang A, Chen X, Li D, Yang L, Jiang J (2021) METTL3-mediated m6A methylation of ASPM drives hepatocellular carcinoma cells growth and metastasis. J Clin Lab Anal 35(9):e23931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Qiao K, Liu Y, Xu Z et al (2021) RNA m6A methylation promotes the formation of vasculogenic mimicry in hepatocellular carcinoma via Hippo pathway. Angiogenesis 24(1):83–96

    Article  CAS  PubMed  Google Scholar 

  116. Liu X, Qin J, Gao T et al (2020) Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY). 12(21):21638–21659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shi Y, Zhuang Y, Zhang J, Chen M, Wu S (2020) METTL14 inhibits hepatocellular carcinoma metastasis through regulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent manner. Cancer Manag Res 12:13173–13184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fan Z, Yang G, Zhang W et al (2021) Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med 25(21):10197–10212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Su R, Dong L, Li Y et al (2022) METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol 24(2):205–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cheng X, Li M, Rao X et al (2019) KIAA1429 regulates the migration and invasion of hepatocellular carcinoma by altering m6A modification of ID2 mRNA. Onco Targets Ther 12:3421–3428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lan T, Li H, Zhang D et al (2019) KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer 18(1):186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Cai X, Chen Y, Man D et al (2021) RBM15 promotes hepatocellular carcinoma progression by regulating N6-methyladenosine modification of YES1 mRNA in an IGF2BP1-dependent manner. Cell Death Discov 7(1):315

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen Y, Peng C, Chen J et al (2019) WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Mol Cancer 18(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  124. Li G, Deng L, Huang N et al (2021) m(6)A mRNA methylation regulates LKB1 to promote autophagy of hepatoblastoma cells through upregulated phosphorylation of AMPK. Genes (Basel) 12(11)

    Google Scholar 

  125. Wang Q, Xie H, Peng H, Yan J, Han L, Ye G (2021) ZC3H13 inhibits the progression of hepatocellular carcinoma through m(6)A-PKM2-mediated glycolysis and enhances chemosensitivity. J Oncol 2021:1328444

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ma H, Wang X, Cai J et al (2019) N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol 15(1):88–94

    Article  CAS  PubMed  Google Scholar 

  127. Wang X, Wang J, Tsui YM et al (2021) RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nat Commun 12(1):1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bian X, Shi D, Xing K et al (2021) AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin Transl Med 11(3):e352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen Y, Zhao Y, Chen J et al (2020) ALKBH5 suppresses malignancy of hepatocellular carcinoma via m(6)A-guided epigenetic inhibition of LYPD1. Mol Cancer 19(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao X, Chen Y, Mao Q et al (2018) Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Biomark 21(4):859–868

    Article  CAS  PubMed  Google Scholar 

  131. Li Q, Ni Y, Zhang L et al (2021) HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther 6(1):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Luo X, Cao M, Gao F, He X (2021) YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Exp Hematol Oncol 10(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bian S, Ni W, Zhu M et al (2020) Identification and validation of the N6-methyladenosine RNA methylation regulator YTHDF1 as a novel prognostic marker and potential target for hepatocellular carcinoma. Front Mol Biosci 7:604766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nakagawa N, Sonohara F, Tanaka K et al (2021) Novel prognostic implications of YTH domain family 2 in resected hepatocellular carcinoma. Oncol Lett 22(1):538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hou J, Zhang H, Liu J et al (2019) YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer 18(1):163

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhong L, Liao D, Zhang M et al (2019) YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442:252–261

    Article  CAS  PubMed  Google Scholar 

  137. Cui Q, Shi H, Ye P et al (2017) M(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Visvanathan A, Patil V, Arora A et al (2018) Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 37(4):522–533

    Article  CAS  PubMed  Google Scholar 

  139. Lv D, Gimple RC, Zhong C et al (2022) PDGF signaling inhibits mitophagy in glioblastoma stem cells through N(6)-methyladenosine. Dev Cell 57(12):1466-1481.e1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tassinari V, Cesarini V, Tomaselli S et al (2021) ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol 22(1):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chang Y-Z, Chai R-C, Pang B et al (2021) METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-κB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett 511:36–46

    Article  CAS  PubMed  Google Scholar 

  142. Li F, Yi Y, Miao Y et al (2019) N6-Methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Can Res 79(22):5785–5798

    Article  CAS  Google Scholar 

  143. Zepecki JP, Karambizi D, Fajardo JE et al (2021) MiRNA-mediated loss of m6A increases nascent translation in glioblastoma. PLoS Genet 17(3):e1009086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Huff S, Tiwari SK, Gonzalez GM, Wang Y, Rana TM (2021) m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol 16(2):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang S, Zhao S, Qi Y et al (2022) SPI1-induced downregulation of FTO promotes GBM progression by regulating pri-miR-10a processing in an m6A-dependent manner. Mol Ther Nucleic Acids 27:699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Xu C, Yuan B, He T, Ding B, Li S (2020) Prognostic values of YTHDF1 regulated negatively by mir-3436 in Glioma. J Cell Mol Med 24(13):7538–7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yarmishyn AA, Yang Y-P, Lu K-H et al (2020) Musashi-1 promotes cancer stem cell properties of glioblastoma cells via upregulation of YTHDF1. Cancer Cell Int 20(1):597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fang R, Chen X, Zhang S et al (2021) EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 12(1):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chai R-C, Chang Y-Z, Chang X et al (2021) YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m6A modification to activate NF-κB and promote the malignant progression of glioma. J Hematol Oncol 14(1):109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Dixit D, Prager BC, Gimple RC et al (2021) The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov 11(2):480–499

    Article  CAS  PubMed  Google Scholar 

  151. Yuan F, Cai X, Cong Z et al (2022) Roles of the m6A modification of RNA in the glioblastoma microenvironment as revealed by single-cell analyses. Front Immunol 13

    Google Scholar 

  152. Zhu X, Yang H, Zhang M et al (2021) YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-STAT signaling in human glioma cells. Cancer Cell Int 21(1):645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Han J, Wang JZ, Yang X et al (2019) METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 18(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cheng M, Sheng L, Gao Q et al (2019) The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-κB/MYC signaling network. Oncogene 38(19):3667–3680

    Article  CAS  PubMed  Google Scholar 

  155. Wang G, Dai Y, Li K et al (2021) Deficiency of Mettl3 in bladder cancer stem cells inhibits bladder cancer progression and angiogenesis. Front Cell Dev Biol 9:627706

    Article  PubMed  PubMed Central  Google Scholar 

  156. Xie H, Li J, Ying Y et al (2020) METTL3/YTHDF2 m(6)A axis promotes tumorigenesis by degrading SETD7 and KLF4 mRNAs in bladder cancer. J Cell Mol Med 24(7):4092–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tao L, Mu X, Chen H et al (2021) FTO modifies the m6A level of MALAT and promotes bladder cancer progression. Clin Transl Med 11(2):e310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Song W, Yang K, Luo J, Gao Z, Gao Y (2021) Dysregulation of USP18/FTO/PYCR1 signaling network promotes bladder cancer development and progression. Aging (Albany NY) 13(3):3909–3925

    Article  CAS  PubMed  Google Scholar 

  159. Yi W, Yu Y, Li Y, Yang J, Gao S, Xu L (2021) The tumor-suppressive effects of alpha-ketoglutarate-dependent dioxygenase FTO via N6-methyladenosine RNA methylation on bladder cancer patients. Bioengineered 12(1):5323–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gu C, Wang Z, Zhou N et al (2019) Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N(6)-methyladenosine of Notch1. Mol Cancer 18(1):168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Guimarães-Teixeira C, Lobo J, Miranda-Gonçalves V et al (2022) Downregulation of m(6) A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol Oncol 16(9):1841–1856

    Google Scholar 

  162. Yu H, Yang X, Tang J et al (2021) ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Mol Ther Nucleic Acids. 23:27–41

    Article  CAS  PubMed  Google Scholar 

  163. Bi X, Lv X, Liu D et al (2021) METTL3-mediated maturation of miR-126-5p promotes ovarian cancer progression via PTEN-mediated PI3K/Akt/mTOR pathway. Cancer Gene Ther 28(3–4):335–349

    Article  CAS  PubMed  Google Scholar 

  164. Liang S, Guan H, Lin X, Li N, Geng F, Li J (2020) METTL3 serves an oncogenic role in human ovarian cancer cells partially via the AKT signaling pathway. Oncol Lett 19(4):3197–3204

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Ma Z, Li Q, Liu P, Dong W, Zuo Y (2020) METTL3 regulates m6A in endometrioid epithelial ovarian cancer independently of METTl14 and WTAP. Cell Biol Int 44(12):2524–2531

    Article  CAS  PubMed  Google Scholar 

  166. Hua W, Zhao Y, Jin X et al (2018) METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol 151(2):356–365

    Article  CAS  PubMed  Google Scholar 

  167. Li Y, Peng H, Jiang P et al (2022) Downregulation of methyltransferase-Like 14 promotes ovarian cancer cell proliferation through stabilizing TROAP mRNA. Front Oncol 12:824258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jiang Y, Wan Y, Gong M, Zhou S, Qiu J, Cheng W (2020) RNA demethylase ALKBH5 promotes ovarian carcinogenesis in a simulated tumour microenvironment through stimulating NF-κB pathway. J Cell Mol Med 24(11):6137–6148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huang H, Wang Y, Kandpal M et al (2020) FTO-dependent N(6)-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res 80(16):3200–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu T, Wei Q, Jin J et al (2020) The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 48(7):3816–3831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xu F, Li J, Ni M et al (2021) FBW7 suppresses ovarian cancer development by targeting the N(6)-methyladenosine binding protein YTHDF2. Mol Cancer 20(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li J, Wu L, Pei M, Zhang Y (2020) YTHDF2, a protein repressed by miR-145, regulates proliferation, apoptosis, and migration in ovarian cancer cells. J Ovarian Res 13(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ma XX, Cao ZG, Zhao SL (2020) m6A methyltransferase METTL3 promotes the progression of prostate cancer via m6A-modified LEF1. Eur Rev Med Pharmacol Sci 24(7):3565–3571

    PubMed  Google Scholar 

  174. Yuan Y, Du Y, Wang L, Liu X (2020) The m6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J Cancer 11(12):3588–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cai J, Yang F, Zhan H et al (2019) RNA m(6)A methyltransferase METTL3 promotes the growth of prostate cancer by regulating hedgehog pathway. Onco Targets Ther 12:9143–9152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Li E, Wei B, Wang X, Kang R (2020) METTL3 enhances cell adhesion through stabilizing integrin β1 mRNA via an m6A-HuR-dependent mechanism in prostatic carcinoma. Am J Cancer Res 10(3):1012–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Lang C, Yin C, Lin K et al (2021) M(6) A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med 11(6):e426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wang Y, Chen J, Gao WQ, Yang R (2022) METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism. Cell Death Discov 8(1):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhu K, Li Y, Xu Y (2021) The FTO m(6)A demethylase inhibits the invasion and migration of prostate cancer cells by regulating total m(6)A levels. Life Sci 271:119180

    Article  CAS  PubMed  Google Scholar 

  180. Li S, Cao L (2022) Demethyltransferase FTO alpha-ketoglutarate dependent dioxygenase (FTO) regulates the proliferation, migration, invasion and tumor growth of prostate cancer by modulating the expression of melanocortin 4 receptor (MC4R). Bioengineered 13(3):5598–5612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Du C, Lv C, Feng Y, Yu S (2020) Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res 39(1):223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li J, Xie H, Ying Y et al (2020) YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer 19(1):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Xia T, Wu X, Cao M et al (2019) The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract 215(11):152666

    Article  CAS  PubMed  Google Scholar 

  184. Wang M, Liu J, Zhao Y et al (2020) Upregulation of METTL14 mediates the elevation of PERP mRNA N(6) adenosine methylation promoting the growth and metastasis of pancreatic cancer. Mol Cancer 19(1):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Deng J, Zhang J, Ye Y et al (2021) N(6)-methyladenosine-mediated upregulation of WTAPP1 promotes WTAP translation and Wnt signaling to facilitate pancreatic cancer progression. Cancer Res 81(20):5268–5283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Huang XT, Li JH, Zhu XX et al (2021) HNRNPC impedes m(6)A-dependent anti-metastatic alternative splicing events in pancreatic ductal adenocarcinoma. Cancer Lett 518:196–206

    Article  CAS  PubMed  Google Scholar 

  187. Tang B, Yang Y, Kang M et al (2020) M(6)A demethylase ALKBH5 inhibits pancreatic cancer tumorigenesis by decreasing WIF-1 RNA methylation and mediating Wnt signaling. Mol Cancer 19(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Guo X, Li K, Jiang W et al (2020) RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer 19(1):91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. He Y, Yue H, Cheng Y et al (2021) ALKBH5-mediated m(6)A demethylation of KCNK15-AS1 inhibits pancreatic cancer progression via regulating KCNK15 and PTEN/AKT signaling. Cell Death Dis 12(12):1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Huang R, Yang L, Zhang Z et al (2021) RNA m(6)A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front Cell Dev Biol 9:724282

    Article  PubMed  PubMed Central  Google Scholar 

  191. Tang X, Liu S, Chen D, Zhao Z, Zhou J (2019) The role of the fat mass and obesity-associated protein in the proliferation of pancreatic cancer cells. Oncol Lett 17(2):2473–2478

    CAS  PubMed  Google Scholar 

  192. Chen J, Sun Y, Xu X et al (2017) YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle 16(23):2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Yang S, Wei J, Cui YH et al (2019) M(6)A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat Commun 10(1):2782

    Article  PubMed  PubMed Central  Google Scholar 

  194. Hao L, Yin J, Yang H et al (2021) ALKBH5-mediated m(6)A demethylation of FOXM1 mRNA promotes progression of uveal melanoma. Aging (Albany NY) 13(3):4045–4062

    Article  CAS  PubMed  Google Scholar 

  195. Dahal U, Le K, Gupta M (2019) RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res 29(4):382–389

    Article  CAS  PubMed  Google Scholar 

  196. Jia R, Chai P, Wang S et al (2019) M(6)A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol Cancer 18(1):161

    Article  PubMed  PubMed Central  Google Scholar 

  197. Yu J, Chai P, Xie M et al (2021) Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 22(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang Z, Yang S, Cui Y-H et al (2021) METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proc Natl Acad Sci 118(35):e2025948118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Cui Y-H, Yang S, Wei J et al (2021) Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun 12(1):2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30(16):R921–R925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li M, Zha X, Wang S (2021) The role of N6-methyladenosine mRNA in the tumor microenvironment. Biochimica et Biophysica Acta (BBA) Rev Cancer 1875(2):188522

    Google Scholar 

  202. Shulman Z, Stern-Ginossar N (2020) The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 21(5):501–512

    Article  CAS  PubMed  Google Scholar 

  203. Rubio RM, Depledge DP, Bianco C, Thompson L, Mohr I (2018) RNA m(6) A modification enzymes shape innate responses to DNA by regulating interferon β. Genes Dev 32(23–24):1472–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Winkler R, Gillis E, Lasman L et al (2019) m6A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 20(2):173–182

    Article  CAS  PubMed  Google Scholar 

  205. Lu M, Zhang Z, Xue M et al (2020) N6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 5(4):584–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Karikó K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    Article  PubMed  Google Scholar 

  207. Li HB, Tong J, Zhu S et al (2017) M(6)A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548(7667):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zheng Z, Zhang L, Cui XL et al (2020) Control of early B cell development by the RNA N(6)-methyladenosine methylation. Cell Rep 31(13):107819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Dong L, Chen C, Zhang Y et al (2021) The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell 39(7):945-957.e910

    Article  CAS  PubMed  Google Scholar 

  210. Tao L, Li D, Mu S, Tian G, Yan G (2022) LncRNA MAPKAPK5_AS1 facilitates cell proliferation in hepatitis B virus -related hepatocellular carcinoma. Lab Invest 102(5):494–504

    Google Scholar 

  211. Yin H, Zhang X, Yang P et al (2021) RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 12(1):1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xiong J, He J, Zhu J et al (2022) Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82(9):1660–1677.e1610

    Google Scholar 

  213. Garofalo C, De Marco C, Cristiani CM (2021) NK cells in the tumor microenvironment as new potential players mediating chemotherapy effects in metastatic melanoma. Front Oncol 11

    Google Scholar 

  214. Song H, Song J, Cheng M et al (2021) METTL3-mediated m(6)A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nature Communications 12(1):5522

    Google Scholar 

  215. Ma S, Yan J, Barr T et al (2021) The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 218(8)

    Google Scholar 

  216. Tong J, Cao G, Zhang T et al (2018) M(6)A mRNA methylation sustains Treg suppressive functions. Cell Res 28(2):253–256

    Article  PubMed  PubMed Central  Google Scholar 

  217. Wylie B, Macri C, Mintern JD, Waithman J. Dendritic cells and cancer: from biology to therapeutic intervention. Cancers (Basel) 11(4)

    Google Scholar 

  218. Han D, Liu J, Chen C et al (2019) Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells. Nature 566(7743):270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Masucci MT, Minopoli M, Carriero MV (2019) Tumor associated neutrophils: their role in tumorigenesis, metastasis, prognosis and therapy. Frontiers in Oncology 9

    Google Scholar 

  220. Ou B, Liu Y, Yang X, Xu X, Yan Y, Zhang J (2021) C5aR1-positive neutrophils promote breast cancer glycolysis through WTAP-dependent m6A methylation of ENO1. Cell Death Dis 12(8):737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Yu L, Chen X, Sun X, Wang L, Chen S (2017) The glycolytic switch in tumors: how many players are involved? J Cancer 8(17):3430–3440

    Article  PubMed  PubMed Central  Google Scholar 

  222. Liu Z, Wang T, She Y et al (2021) N(6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer 20(1):105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wan W, Ao X, Chen Q et al (2022) METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer 21(1):60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang L, Hui H, Agrawal K et al (2020) M(6)A RNA methyltransferases METTL3/14 regulate immune responses to anti-PD-1 therapy. Embo J 39(20):e104514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Shen S, Yan J, Zhang Y, Dong Z, Xing J, He Y (2021) N6-methyladenosine (m6A)-mediated messenger RNA signatures and the tumor immune microenvironment can predict the prognosis of hepatocellular carcinoma. Ann Transl Med 9(1):59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhong C, Tao B, Yang F et al (2021) Histone demethylase JMJD1C promotes the polarization of M1 macrophages to prevent glioma by upregulating miR-302a. Clin Transl Med 11(9):e424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Liu Y, Liang G, Xu H et al (2021) Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Mol Cancer 20(1):105

    Google Scholar 

  228. Bai X, Wong CC, Pan Y et al (2022) Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer 10(2)

    Google Scholar 

  229. Li Y, Zheng JN, Wang EH, Gong CJ, Lan KF, Ding X (2020) The m6A reader protein YTHDC2 is a potential biomarker and associated with immune infiltration in head and neck squamous cell carcinoma. PeerJ 8:e10385

    Article  PubMed  PubMed Central  Google Scholar 

  230. Li H, Su Q, Li B et al (2020) High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med 24(8):4452–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kannaiyan R, Mahadevan D (2018) A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev Anticancer Ther 18(12):1249–1270

    Google Scholar 

  232. Cohen P, Cross D, Jänne PA (2021) Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discovery 20(7):551–569

    Article  CAS  PubMed  Google Scholar 

  233. Frampton JE, Easthope SE (2004) Gefitinib: a review of its use in the management of advanced non-small-cell lung cancer. Drugs 64(21):2475–2492

    Google Scholar 

  234. Xiao P, Liu YK, Han W, Hu Y, Zhang BY, Liu WL (2021) Exosomal delivery of FTO confers gefitinib resistance to recipient cells through ABCC10 regulation in an m6A-dependent manner. Mol Cancer Res 19(4):726–738

    Article  CAS  PubMed  Google Scholar 

  235. Tang J, Han T, Tong W, Zhao J, Wang W (2021) N(6)-methyladenosine (m(6)A) methyltransferase KIAA1429 accelerates the gefitinib resistance of non-small-cell lung cancer. Cell Death Discov 7(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Wang T, Liu Z, She Y et al (2021) A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Lett 520:321–331

    Article  CAS  PubMed  Google Scholar 

  237. Malapelle U, Ricciuti B, Baglivo S et al (2018) Osimertinib. Recent Results Cancer Res 211:257–276

    Google Scholar 

  238. Li K, Gao S, Ma L et al (2021) Stimulation of Let-7 maturation by metformin improved the response to tyrosine kinase inhibitor therapy in an m6A dependent manner. Front Oncol 11:731561

    Article  CAS  PubMed  Google Scholar 

  239. Iyer R, Fetterly G, Lugade A, Thanavala Y (2010) Sorafenib: a clinical and pharmacologic review. Expert Opin Pharmacother 11(11):1943–1955

    Google Scholar 

  240. Zhou T, Li S, Xiang D et al (2020) m6A RNA methylation-mediated HNF3γ reduction renders hepatocellular carcinoma dedifferentiation and sorafenib resistance. Signal Transduct Target Ther 5(1):296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lin Z, Niu Y, Wan A et al (2020) RNA m(6) A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. Embo j 39(12):e103181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Xu J, Wan Z, Tang M et al (2020) N(6)-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer 19(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bhattarai PY, Kim G, Poudel M, Lim SC, Choi HS (2021) METTL3 induces PLX4032 resistance in melanoma by promoting m(6)A-dependent EGFR translation. Cancer Lett 522:44–56

    Article  CAS  PubMed  Google Scholar 

  244. Amjad MT, Chidharla A, Kasi A (2001) Cancer chemotherapy. BTI-StatPearls

    Google Scholar 

  245. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Google Scholar 

  246. Shi L, Gong Y, Zhuo L, Wang S, Chen S, Ke B (2022) Methyltransferase-like 3 upregulation is involved in the chemoresistance of non-small cell lung cancer. Ann Transl Med 10(3):139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Nie S, Zhang L, Liu J et al (2021) ALKBH5-HOXA10 loop-mediated JAK2 m6A demethylation and cisplatin resistance in epithelial ovarian cancer. J Exp Clin Cancer Res 40(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chen P, Liu XQ, Lin X, Gao LY, Zhang S, Huang X (2021) Targeting YTHDF1 effectively re-sensitizes cisplatin-resistant colon cancer cells by modulating GLS-mediated glutamine metabolism. Mol Ther Oncolytics 20:228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Hao L, Wang JM, Liu BQ et al (2021) m6A-YTHDF1-mediated TRIM29 upregulation facilitates the stem cell-like phenotype of cisplatin-resistant ovarian cancer cells. Biochim Biophys Acta Mol Cell Res 1868(1):118878

    Article  CAS  PubMed  Google Scholar 

  250. Shi Y, Fan S, Wu M et al (2019) YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 10(1):4892

    Article  PubMed  PubMed Central  Google Scholar 

  251. Culy CR, Clemett D, Wiseman LR (2000) Oxaliplatin: a review of its pharmacological properties and clinical efficacy in metastatic colorectal cancer and its potential in other malignancies. Drugs 60(4):895–924

    Google Scholar 

  252. Zaniboni A, Meriggi F (2005) The emerging role of oxaliplatin in the treatment of gastric cancer. J Chemother 17(6):656–662

    Google Scholar 

  253. Lan H, Liu Y, Liu J et al (2021) Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m(6)A of TRAF5 and necroptosis in colorectal cancer. Mol Pharm 18(3):1026–1037

    Article  CAS  PubMed  Google Scholar 

  254. Li H, Wang C, Lan L et al (2022) METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci 79(3):135

    Article  CAS  PubMed  Google Scholar 

  255. Heinemann V (2000) Gemcitabine: progress in the treatment of pancreatic cancer. Oncology 60(1):8–18

    Google Scholar 

  256. Zhang C, Ou S, Zhou Y et al (2021) M(6)A methyltransferase METTL14-mediated upregulation of cytidine deaminase promoting gemcitabine resistance in pancreatic cancer. Front Oncol 11:696371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Hua YQ, Zhang K, Sheng J et al (2021) NUCB1 suppresses growth and shows additive effects with gemcitabine in pancreatic ductal adenocarcinoma via the unfolded protein response. Front Cell Dev Biol. 9:641836

    Article  PubMed  PubMed Central  Google Scholar 

  258. Wesolowski JR, Rajdev P, Mukherji SK (2010) Temozolomide (Temodar). AJNR Am J Neuroradiol 31(8):1383–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Shi J, Chen G, Dong X et al (2021) METTL3 promotes the resistance of glioma to temozolomide via increasing MGMT and ANPG in a m6A dependent manner. Front Oncol 11

    Google Scholar 

  260. Xiao L, Li X, Mu Z et al (2020) FTO inhibition enhances the antitumor effect of temozolomide by targeting MYC-miR-155/23a cluster-MXI1 feedback circuit in glioma. Can Res 80(18):3945–3958

    Article  CAS  Google Scholar 

  261. Chen Y, Wang Y-L, Qiu K et al (2022) YTHDF2 promotes temozolomide resistance in glioblastoma by activation of the Akt and NF-κB signalling pathways via inhibiting EPHB3 and TNFAIP3. Clin Transl Immunol 11(5):e1393

    Article  CAS  Google Scholar 

  262. Shafei A, El-Bakly W, Sobhy A et al (2017) A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed Pharmacother 95:1209–1218

    Google Scholar 

  263. Li S, Jiang F, Chen F, Deng Y, Pan X (2022) Effect of m6A methyltransferase METTL3-mediated MALAT1/E2F1/AGR2 axis on adriamycin resistance in breast cancer. J Biochem Mol Toxicol 36(1):e22922

    Article  CAS  PubMed  Google Scholar 

  264. Yang Z, Zhao F, Gu X et al (2021) Binding of RNA m6A by IGF2BP3 triggers chemoresistance of HCT8 cells via upregulation of ABCB1. Am J Cancer Res 11(4):1428–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Liu X, Su K, Sun X et al (2021) Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res 40(1):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Zhang Y, Kang M, Zhang B et al (2019) M(6)A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer 18(1):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Hao CC, Xu CY, Zhao XY et al (2020) Up-regulation of VANGL1 by IGF2BPs and miR-29b-3p attenuates the detrimental effect of irradiation on lung adenocarcinoma. J Exp Clin Cancer Res 39(1):256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Darvin P, Toor SM, Sasidharan Nair V, Elkord E (2018) Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med 50(12):1–11

    Article  PubMed  Google Scholar 

  269. Li N, Kang Y, Wang L et al (2020) ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA 117(33):20159–20170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Huang X, Qiu Z, Li L, Chen B, Huang P (2021) m6A regulator-mediated methylation modification patterns and tumor microenvironment infiltration characterization in hepatocellular carcinoma. Aging (Albany NY) 13(16):20698–20715

    Article  CAS  PubMed  Google Scholar 

  271. Liu X, Gonzalez G, Dai X et al (2020) Adenylate kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m(6)A-based epitranscriptomic mechanism. Mol Ther 28(12):2593–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Petri BJ, Piell KM, South Whitt GC et al (2021) HNRNPA2B1 regulates tamoxifen- and fulvestrant-sensitivity and hallmarks of endocrine resistance in breast cancer cells. Cancer Lett 518:152–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to those investigators whose work could not be directly referenced owing to space limitations. We thank Ann Motten for her critical reading of the manuscript. Work in the authors’ laboratory was supported in part by NIH grants 5T32CA009594-32 (E.W.), ES031534 (Y.-Y.H), ES024373 (Y.-Y.H.), ES030576 (Y.-Y.H.), the CACHET (NIH ES027792), the University of Chicago Comprehensive Cancer Center (NIH CA014599), the CTSA (NIH UL1 TR000430), and the University of Chicago Friends of Dermatology Endowment Fund. All figures were created with https://www.biorender.com/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ying He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verghese, M., Wilkinson, E., He, YY. (2023). Recent Advances in RNA m6A Modification in Solid Tumors and Tumor Immunity. In: Chen, J., Wang, G.G., Lu, J. (eds) Epigenetics in Oncology . Cancer Treatment and Research, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-031-45654-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45654-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45653-4

  • Online ISBN: 978-3-031-45654-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics