Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14285))

Included in the following conference series:

Abstract

Variability is a fact of life. Variability is variations that occur in Human performance after multiple repetitions. The central concept of behavioral flexibility in motor control was presented by Bernstein when he stated that movements are a “repetition without repetition” to describe how, well-learned movements, show variation when achieving the task outcome. Handwriting is an example of a complex task that results from a sequence of movements. It has a specific variability structure, and temporal organization, that inform the regularity with which children write as well as their adaptability to the task, e.g., a fractal dynamics behavior. Movement analysis using nonlinear dynamical systems theory for human behavior provides a better understanding of the execution of pathologies, psychomotor problems, or problems in motor control. Dynamic Systems theory suggests that biological systems self-organize according to the environment, and biomechanical and morphological constraints to find the most stable solution for producing a given movement. The concepts of variability and chaotic variation in human movement, along with advanced tools used to measure human movement variability open new perspectives to guide practice and a fundamental complementary means of diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stergiou, N., Harbourne, R.T., Cavanaugh, J.T.: Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30, 120–129 (2006)

    Article  Google Scholar 

  2. Profeta, V.L.S., Turvey, M.T.: Bernstein’s levels of movement construction: a contemporary perspective. Hum. Mov. Sci. 57, 111–133 (2018)

    Article  Google Scholar 

  3. Harrison, S.J., Stergiou, N., Harrison, S.J.: Complex adaptive behavior and dexterous action, vol. 46 (2016)

    Google Scholar 

  4. Hamill, J., Palmer, C., Van Emmerik, R.E.A.: Coordinative variability and overuse injury. BMC Sports Sci. Med. Rehabil. 4, 45 (2012)

    Article  Google Scholar 

  5. Scafetta, N., Marchi, D., West, B.J.: Understanding the complexity of human gait dynamics. Chaos 19, 026108 (2009). https://doi.org/10.1063/1.3143035

    Article  MathSciNet  Google Scholar 

  6. Aagaard, P., Simonsen, E.B., Andersen, J.L., Magnusson, P., Dyhre-Poulsen, P.: Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 93, 1318–1326 (2002)

    Article  Google Scholar 

  7. Bonacci, J., Fox, A., Hall, M., Fuller, J.T., Vicenzino, B.: Effect of gait retraining on segment coordination and joint variability in individuals with patellofemoral pain. Clin. Biomech. 80, 105179 (2020)

    Article  Google Scholar 

  8. Stroppa, F., Soylemez, A., Yuksel, H.T., Akbas, B., Sarac, M.: Optimizing exoskeleton design with evolutionary computation: an intensive survey. Robotics 12, 106 (2023)

    Article  Google Scholar 

  9. Silva, M.P.T., Ambrósio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical systems. Multibody Syst. Dyn. 8, 219–239 (2002)

    Article  MATH  Google Scholar 

  10. Amarantini, D., Rao, G., Martin, L., Berton, É.: EMG-based estimation of muscular efforts exerted during human movements. Mov. Sport Sci. 75, 27 (2012)

    Google Scholar 

  11. Winter, D.A.: Biomechanics and Motor Control of Human Movement. Wiley, Hoboken (2009)

    Book  Google Scholar 

  12. Harbourne, R.T., Stergiou, N.: Movement variability and the use of nonlinear tools: principles to guide physical therapist practice. Phys. Ther. 89, 267–282 (2009)

    Article  Google Scholar 

  13. Raffalt, P.C., Stergiou, N., Sommerfeld, J.H., Likens, A.D.: The temporal pattern and the probability distribution of visual cueing can alter the structure of stride-to-stride variability. Neurosci. Lett. 763, 136193 (2021)

    Article  Google Scholar 

  14. Saraiva, M., Marouvo, J., Fernandes, O., Castro, M.A., Vilas-Boas, J.P.: Postural control and sleep quality in cognitive dual tasking in healthy young adults. J. 4, 257–265 (2021)

    Google Scholar 

  15. Saraiva, M., Vilas-Boas, J.P., Fernandes, O.J., Castro, M.A.: Effects of motor task difficulty on postural control complexity during dual tasks in young adults: a nonlinear approach. Sensors 23, 628 (2023)

    Article  Google Scholar 

  16. Deffeyes, J.E., Harbourne, R.T., Kyvelidou, A., Stuberg, W.A., Stergiou, N.: Nonlinear analysis of sitting postural sway indicates developmental delay in infants (2009)

    Google Scholar 

  17. Cavanaugh, J.T., Guskiewicz, K.M., Stergiou, N.: A nonlinear dynamic approach for evaluating postural control: new directions for the management of sport-related cerebral concussion. Sports Med. 35, 935–950 (2005)

    Article  Google Scholar 

  18. Kaipust, J.P., McGrath, D., Mukherjee, M., Stergiou, N.: Gait variability is altered in older adults when listening to auditory stimuli with differing temporal structures. Ann. Biomed. Eng. 41, 1595–1603 (2013)

    Article  Google Scholar 

  19. Taga, G.: Nonlinear dynamics of the human motor control (2000)

    Google Scholar 

  20. Favela, L.H.: Dynamical systems theory in cognitive science and neuroscience. Phil. Compass. 15, 12695 (2020)

    Article  Google Scholar 

  21. Duarte, R., et al.: Capturing complex human behaviors in representative sports contexts with a single camera. Medicina 46, 408 (2010)

    Article  Google Scholar 

  22. Araújo, D., et al.: Ecological dynamics of continuous and categorical decision-making: the regatta start in sailing. Eur. J. Sport Sci. 15, 195–202 (2015)

    Article  Google Scholar 

  23. Kugler, P.N., Scott Kelso, J.A., Turvey, M.T.: 1 on the concept of coordinative structures as dissipative structures: I. theoretical lines of convergence. In: Advances in Psychology, pp. 3–47. Elsevier (1980)

    Google Scholar 

  24. Rhea, C.K., et al.: Fractal gait patterns are retained after entrainment to a fractal stimulus. PLoS ONE 9, e106755 (2014)

    Article  Google Scholar 

  25. Delignières, D.: Synchronization with fractal rhythms, vol. 198 (2009)

    Google Scholar 

  26. Cavanaugh, J.T., Kelty-Stephen, D.G., Stergiou, N.: Multifractality, interactivity, and the adaptive capacity of the human movement system: a perspective for advancing the conceptual basis of neurologic physical therapy. J. Neurol. Phys. Ther. 41, 245–251 (2017)

    Article  Google Scholar 

  27. Marmelat, V.: ‘Human paced’ walking: followers adopt stride time dynamics of leaders. Neurosci. Lett. 5, 67–71 (2014)

    Article  Google Scholar 

  28. Marmelat, V., Torre, K., Beek, P.J., Daffertshofer, A.: Persistent fluctuations in stride intervals under fractal auditory stimulation. PLoS ONE 9, e91949 (2014)

    Article  Google Scholar 

  29. Yeh, R.-G.: Detrended fluctuation analyses of short-term heart rate variability in surgical intensive care units. Biomed. Eng. 18, 6 (2006)

    Google Scholar 

  30. Yentes, J.M., Hunt, N., Schmid, K.K., Kaipust, J.P., McGrath, D., Stergiou, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41, 349–365 (2013)

    Article  Google Scholar 

  31. Busa, M.A., van Emmerik, R.E.A.: Multiscale entropy: a tool for understanding the complexity of postural control. J. Sport Health Sci. 5, 44–51 (2016)

    Article  Google Scholar 

  32. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circul. Physiol. 278, H2039–H2049 (2000)

    Article  Google Scholar 

  33. Chen, P.-H., Wang, R.-L., Liou, D.-J., Shaw, J.-S.: Gait disorders in Parkinson’s disease: assessment and management. Int. J. Gerontol. 7, 189–193 (2013)

    Article  Google Scholar 

  34. Harrison, E.C., McNeely, M.E., Earhart, G.M.: The feasibility of singing to improve gait in Parkinson disease. Gait Post. 53, 224–229 (2017)

    Article  Google Scholar 

  35. Huisinga, J.M., Yentes, J.M., Filipi, M.L., Stergiou, N.: Postural control strategy during standing is altered in patients with multiple sclerosis. Neurosci. Lett. 524, 124–128 (2012)

    Article  Google Scholar 

  36. Stergiou, N., Decker, L.M.: Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 30, 869–888 (2011)

    Article  Google Scholar 

  37. Mehdizadeh, S.: The largest Lyapunov exponent of gait in young and elderly individuals: a systematic review. Gait Post. 60, 241–250 (2018)

    Article  Google Scholar 

  38. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stergiou, N.: Biomechanics and Gait Analysis. Elsevier, Waltham (2020)

    Google Scholar 

  40. Stergiou, N. (ed.): Nonlinear analysis for human movement variability. Taylor & Francis, Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc, Boca Raton (2016)

    Google Scholar 

  41. Smith, T.J.: Variability in human performance (2014)

    Google Scholar 

  42. Błażkiewicz, M., Hadamus, A., Borkowski, R.: Recurrence quantification analysis as a form of postural control assessment: a systematic review. Appl. Sci. 13, 5587 (2023)

    Article  Google Scholar 

  43. Prabhu, P., Pradhan, N.: Recurrence quantification analysis of human gait in neurological movement disorders. Int. J. Eng. Res. 5(03), 1–6 (2016)

    Google Scholar 

  44. Flatters, I., Mushtaq, F., Hill, L.J.B., Holt, R.J., Wilkie, R.M., Mon-Williams, M.: The relationship between a child’s postural stability and manual dexterity. Exp. Brain Res. 232, 2907–2917 (2014)

    Article  Google Scholar 

  45. Prattichizzo, D., Meli, L., Malvezzi, M.: Digital handwriting with a finger or a stylus: a biomechanical comparison. IEEE Trans. Haptics 8, 356–370 (2015)

    Article  Google Scholar 

  46. Longstaff, M.G., Heath, R.A.: The influence of motor system degradation on the control of handwriting movements: a dynamical systems analysis. Hum. Mov. Sci. 22, 91–110 (2003)

    Article  Google Scholar 

  47. Tseng, M.H., Chow, S.M.K.: Perceptual-motor function of school-age children with slow handwriting speed. Am. J. Occup. Ther. 54, 83–88 (2000)

    Article  Google Scholar 

  48. Scordella, A., et al.: The role of general dynamic coordination in the handwriting skills of children. Front. Psychol. 06, 580 (2015)

    Article  Google Scholar 

  49. Kushki, A., Schwellnus, H., Ilyas, F., Chau, T.: Changes in kinetics and kinematics of handwriting during a prolonged writing task in children with and without dysgraphia. Res. Dev. Disabil. 32, 1058–1064 (2011)

    Article  Google Scholar 

  50. Fernandes, D.N., Chau, T.: Fractal dimensions of pacing and grip force in drawing and handwriting production. J. Biomech. 41, 40–46 (2008)

    Article  Google Scholar 

  51. Garnacho-Castaño, M.-V., Faundez-Zanuy, M., Lopez-Xarbau, J.: On the handwriting tasks’ analysis to detect fatigue. Appl. Sci. 10, 7630 (2020)

    Article  Google Scholar 

  52. Falk, T.H., Tam, C., Schellnus, H., Chau, T.: On the development of a computer-based handwriting assessment tool to objectively quantify handwriting proficiency in children. Comput. Methods Prog. Biomed. 104, e102–e111 (2011)

    Article  Google Scholar 

  53. Schmid, M., Conforto, S., Lopez, L., D’Alessio, T.: Cognitive load affects postural control in children. Exp. Brain Res. 179, 375–385 (2007)

    Article  Google Scholar 

  54. Plandowska, M., Lichota, M., Górniak, K.: Postural stability of 5-year-old girls and boys with different body heights. PLoS ONE 14, e0227119 (2019)

    Article  Google Scholar 

  55. Lacour, M., Bernard-Demanze, L., Dumitrescu, M.: Posture control, aging, and attention resources: models and posture-analysis methods. Neurophysiologie Clinique/Clin. Neurophysiol. 38, 411–421 (2008)

    Article  Google Scholar 

  56. Levac, D., Pierrynowski, M.R., Canestraro, M., Gurr, L., Leonard, L., Neeley, C.: Exploring children’s movement characteristics during virtual reality video game play. Hum. Mov. Sci. 29, 1023–1038 (2010)

    Article  Google Scholar 

  57. Nelson, M., Koilias, A., Gubbi, S., Mousas, C.: Within a virtual crowd: exploring human movement behavior during immersive virtual crowd interaction. In: Proceedings of the 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 1–10. ACM, Brisbane (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandes, O. (2023). Methods for Analyzing Movement Variability. In: Parziale, A., Diaz, M., Melo, F. (eds) Graphonomics in Human Body Movement. Bridging Research and Practice from Motor Control to Handwriting Analysis and Recognition. IGS 2023. Lecture Notes in Computer Science, vol 14285. Springer, Cham. https://doi.org/10.1007/978-3-031-45461-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45461-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45460-8

  • Online ISBN: 978-3-031-45461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics