Skip to main content
Log in

Cognitive load affects postural control in children

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Inferring relations between cognitive processes and postural control is a relatively topical challenge in developmental neurology. This study investigated the effect of a concurrent cognitive task on postural control in a sample of 50 nine-year-old children. Each subject completed two balance trials of 60 s, one with a concurrent cognitive task (cognitive load) and another with no cognitive load. The concurrent cognitive task consisted of mentally counting backwards in steps of 2. Twelve posturographic parameters (PPs) were extracted from the centre of pressure (CoP) trajectory obtained through a load cell force plate. Analysis of variance revealed significant differences in the majority of the extracted PPs. CoP was found to travel faster, farther, and with substantially different features demonstrating an overall broadening of the spectrum in the frequency domain. Nonlinear stability factors revealed significant differences when exposed to a concurrent cognitive task, showing an increase of instability in the intervention rate of the postural control system. By grouping children through selected items from Teachers Ratings and PANESS assessment, specific significant differences were also found both in time and frequency domain PPs, thus confirming the hypothesis of an interaction between cognitive processes (and their development), and postural control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Assaiante C (1998) Development of locomotor balance control in healthy children. Neurosci Biobehav Rev 22:527–532

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Amblard B (1995) An ontogenetic model for the sensorimotor organization of balance control in humans. Hum Mov Sci 14:13–43

    Article  Google Scholar 

  • Baratto L, Morasso PG, Re C, Spada G (2002) A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Motor Control 6:246–270

    PubMed  Google Scholar 

  • Barela JA, Jeka JJ, Clark JE (2003) Postural control in children. Coupling to dynamic somatosensory information. Exp Brain Res 150:434–442

    PubMed  Google Scholar 

  • Barra J, Bray A, Sahni V, Golding JF, Gresty MA (2006) Increasing cognitive load with increasing balance challenge: recipe for catastrophe. Exp Br Res DOI 10.1007/s00221–006–0519–2

  • Blanchard Y, Carey S, Coffey J, Cohen A, Harris T, Michlik S, Pellecchia GL (2005) The influence of concurrent cognitive tasks on postural sway in children. Pediatr Phys Ther 17:189–193

    Article  PubMed  Google Scholar 

  • Blaszczyk JW, Klonowski W (2001) Postural stability and fractal dynamics. Acta Neurobiol Exp (Wars) 61:105–112

    CAS  Google Scholar 

  • Chiari L, Cappello A, Lenzi D, Della Croce U (2000) An improved technique for the extraction of stochastic parameters from stabilograms. Gait Posture 12:225–234

    Article  PubMed  CAS  Google Scholar 

  • Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech (Bristol, Avon) 17:666–677

    Article  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    Article  PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1995) Upright, correlated random walks: a statistical-biomechanics approach to the human postural control system. Chaos 5:57–63

    Article  PubMed  Google Scholar 

  • Dault MC, Yardley L, Frank JS (2003) Does articulation contribute to modifications of postural control during dual-task paradigms? Brain Res Cogn Brain Res 16:434–440

    Article  PubMed  Google Scholar 

  • Denckla MB (1985) Revised neurological examination for subtle signs (1985). Psychopharmacol Bull 21:773–800

    PubMed  CAS  Google Scholar 

  • Deutsch F (1952) Analytic posturology. Psychoanal Q 21:196–214

    PubMed  CAS  Google Scholar 

  • Diener HC, Dichgans J (1988) [Applications and uses of static and dynamic measurement of posture (posturography)]. Fortschr Neurol Psychiatr 56:249–258

    Article  PubMed  CAS  Google Scholar 

  • Fawcett AJ, Nicolson RI (1992) Automatisation deficits in balance for dyslexic children. Percept Mot Skills 75:507–529

    Article  PubMed  CAS  Google Scholar 

  • Fawcett AJ, Nicolson RI (1999) Performance of dyslexic children on cerebellar and cognitive tests. J Mot Behav 31:68–78

    PubMed  Google Scholar 

  • Geuze RH (2003) Static balance and developmental coordination disorder. Hum Mov Sci 22:527–548

    Article  PubMed  Google Scholar 

  • Giese MA, Dijkstra TM, Schoner G, Gielen CC (1996) Identification of the nonlinear state-space dynamics of the action-perception cycle for visually induced postural sway. Biol Cybern 74:427–437

    Article  PubMed  CAS  Google Scholar 

  • Hunter MC, Hoffman MA (2001) Postural control: visual and cognitive manipulations. Gait Posture 13:41–48

    Article  PubMed  CAS  Google Scholar 

  • Kapteyn TS, de Wit G (1972) Posturography as an auxiliary in vestibular investigation. Acta Otolaryngol 73:104–111

    Article  PubMed  CAS  Google Scholar 

  • Katoulis EC, Ebdon-Parry M, Hollis S, Harrison AJ, Vileikyte L, Kulkarni J, Boulton AJ (1997) Postural instability in diabetic neuropathic patients at risk of foot ulceration. Diabet Med 14:296–300

    Article  PubMed  CAS  Google Scholar 

  • Kohen-Raz R (1970) Developmental patterns of static balance ability and their relation to cognitive school readiness. Pediatrics 46:276–285

    PubMed  CAS  Google Scholar 

  • Liebovitch LS, Yang WM (1997) Transition from persistent to antipersistent correlation in biological systems. Phys Rev E 56:4557–4566

    Article  CAS  Google Scholar 

  • Manckoundia P, Pfitzenmeyer P, d’Athis P, Dubost V, Mourey F (2005) Impact of cognitive task on the posture of elderly subjects with Alzheimer’s disease compared to healthy elderly subjects. Mov Disord 21:236–241

    Article  Google Scholar 

  • Melzer I, Benjuya N, Kaplanski J (2001) Age related changes of postural control: the effect of cognitive task. Gerontology 47:189–194

    Article  PubMed  CAS  Google Scholar 

  • Moe-Nilssen R, Helbostad JL, Talcott JB, Toennessen FE (2003) Balance and gait in children with dyslexia. Exp Brain Res 150:237–244

    PubMed  Google Scholar 

  • Molloy CA, Dietrich KN, Bhattacharya A (2003) Postural stability in children with autism spectrum disorder. J Autism Dev Disord 33:643–652

    Article  PubMed  Google Scholar 

  • Neumann O (1987) Beyond capacity: a functional view of attention. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Hillsdale, NJ, pp 361–394

    Google Scholar 

  • Nolan L, Grigorenko A, Thorstensson A (2005) Balance control: sex and age differences in 9- to 16-year-olds. Dev Med Child Neurol 47:449–454

    Article  PubMed  Google Scholar 

  • Palus M, Hoyer D (1998) Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng Med Biol Mag 17:40–45

    Article  PubMed  CAS  Google Scholar 

  • Pellecchia GL (2003) Postural sway increases with attentional demands of concurrent cognitive task. Gait Posture 18:29–34

    Article  PubMed  Google Scholar 

  • Poblano A, Ishiwara K, de Lourdes Arias M, Garcia-Pedroza F, Marin H, Trujillo M (2002) Motor control alteration in posturography in learning-disabled children. Arch Med Res 33:485–488

    Article  PubMed  Google Scholar 

  • Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM (1996) Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng 43:956–966

    Article  PubMed  CAS  Google Scholar 

  • Riach CL, Starkes JL (1993) Stability Limits of Quiet Standing Postural Control in Children and Adults. Gait Posture 1:105–111

    Article  Google Scholar 

  • Riley MA, Baker AA, Schmit JM (2003) Inverse relation between postural variability and difficulty of a concurrent shortterm memory task. Br Res Bull 63:191–195

    Article  Google Scholar 

  • Riley MA, Baker AA, Schmit JM, Weaver E (2005) Effects of visual and auditory short-term memory tasks on the spatiotemporal dynamics and variability of postural sway. J Mot Behav 37:311–324

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Conforto S, Camomilla V, Cappozzo A, D’Alessio T (2002) The sensitivity of posturographic parameters to acquisition settings. Med Eng Phys 24:623–631

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Conforto S, Lopez L, Renzi P, D’Alessio T (2005) The development of postural strategies in children: a factorial design study. Jnl Neuro Eng Rehab 2:29

    Google Scholar 

  • Seliktar R, Susak Z, Najenson T, Solzi P (1978) Dynamic features of standing and their correlation with neurological disorders. Scand J Rehabil Med 10:59–64

    PubMed  CAS  Google Scholar 

  • Shumway-Cook A, Woollacott M, Kerns KA, Baldwin M (1997) The effects of two types of cognitive tasks on postural stability in older adults with and without a history of falls. J Gerontol A Biol Sci Med Sci 52:M232–240

    PubMed  CAS  Google Scholar 

  • Slobounov SM, Slobounova ES, Newell KM (1997) Virtual time-to-collision and human postural control. J Mot Behav 29:263–281

    Article  PubMed  Google Scholar 

  • Soames RW, Atha J (1980) The validity of physique-based inverted pendulum models of postural sway behaviour. Ann Hum Biol 7:145–153

    Article  PubMed  CAS  Google Scholar 

  • Uimonen S, Laitakari K, Bloigu R, Sorri M (1994) The repeatability of posturographic measurements and the effects of sleep deprivation. J Vestib Res 4:29–36

    PubMed  CAS  Google Scholar 

  • van Wegen EE, van Emmerik RE, Riccio GE (2002) Postural orientation: age-related changes in variability and time-to-boundary. Hum Mov Sci 21:61–84

    Article  PubMed  Google Scholar 

  • Weeks DL, Forget R, Mouchnino L, Gravel D, Bourbonnais D (2003) Interaction between attention demanding motor and cognitive tasks and static postural stability. Gerontology 49:225–232

    Article  PubMed  CAS  Google Scholar 

  • Woollacott MH, Shumway-Cook A (1990) Changes in posture control across the life span—a systems approach. Phys Ther 70:799–807

    PubMed  CAS  Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14

    Article  PubMed  Google Scholar 

  • Yardley L, Gardner M, Leadbetter A, Lavie N (1999) Effect of articulatory and mental tasks on postural control. Neuroreport 10:215–219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of the two anonymous reviewers is greatly acknowledged. In particular, the authors wish to thank reviewer 2, for her/his help in substantially improving style. The authors wish also to thank PsyD Annalisa Conte, for her support in PANESS data collection. The help of the class teachers of the “Istituto Comprensivo Indro Montanelli” is greatly acknowledged. Work partially supported by MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Conforto, S., Lopez, L. et al. Cognitive load affects postural control in children. Exp Brain Res 179, 375–385 (2007). https://doi.org/10.1007/s00221-006-0795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0795-x

Keywords

Navigation