Skip to main content

Health Risk Linked to Cr Toxicity in Food and Environment

  • Chapter
  • First Online:
Chromium in Plants and Environment

Part of the book series: Environmental Science and Engineering ((ESE))

  • 103 Accesses

Abstract

The increasing prevalence of exposure to high concentrations of chromium in food and the environment has made chromium toxicity a pressing public health issue. This review provides an overview of chromium toxicology, sources of exposure, and strategies for mitigating the associated health risks and consequences. Hexavalent chromium, a toxic form of the metal, has been causally linked to numerous negative health outcomes, including carcinogenicity, genotoxicity, oxidative stress, and inflammation. Exposure to hexavalent chromium primarily occurs through contaminated food and the environment, especially in areas close to industrial sites. Food can become contaminated through soil, water, air, and the use of chromium in food packaging and processing equipment. The highest chromium concentrations have been detected in certain food items such as grains, spices, and meat products. To minimize exposure to chromium toxicity, it is crucial to be aware of the sources of chromium in one’s diet and environment. Opting for chromium-free food packaging and limiting consumption of foods with high chromium concentrations can reduce exposure. The government and industry must also take steps to reduce chromium release into the environment and ensure the safety of food and water supplies. In conclusion, this review highlights the significance of comprehending the health risks posed by chromium toxicity and taking necessary precautions to reduce exposure. Further research is necessary to gain a more comprehensive understanding of the toxic effects of chromium and develop effective prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S (2018) Chromium toxicity and its effects on kidney function. J Environ Sci Health 53(12):1033–1042

    Google Scholar 

  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K et al (2019). Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9(11):735

    Google Scholar 

  • Akbal F, Camcı S (2010) Comparison of electrocoagulation and chemical coagulation for heavy metal removal. Chem Eng Technol 33(10):1655–1664

    Article  Google Scholar 

  • Akerstrom B, Eriksson P, Vahter M (2013) Chromium and its toxic effects on living organisms. Environ Toxicol Pharmacol 36(2):526–535

    Google Scholar 

  • Akinola O (2019) Chromium toxicity and liver injury. Toxins 11(5):365

    Google Scholar 

  • Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32:563–573

    Article  Google Scholar 

  • Almaguer-Busso G, Velasco-Martínez G, Carreño-Aguilera G, Gutiérrez-Granados S, Torres-Reyes E, Alatorre-Ordaz A (2009) A comparative study of global hexavalent chromium removal by chemical and electrochemical processes. Electrochem Commun 11(6):1097–1100

    Article  Google Scholar 

  • Annamalai K, Nair AM, Chinnaraju S, Kuppusamy S (2014) Removal of chromium from contaminated effluent and simultaneously Green nanoparticle synthesis using Bacillus subtilis. Malaya J Biosci 1(1):13–18

    Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  Google Scholar 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1):37–59

    Article  Google Scholar 

  • Balakrishnan R, Kumar CSS, Rani MU, Srikanth MK, Boobalan G, Reddy AG (2013) An evaluation of the protective role of α-tocopherol on free radical induced hepatotoxicity and nephrotoxicity due to chromium in rats. Indian J Pharmacol 45(5):490

    Article  Google Scholar 

  • Bhatnagar A, Ansari GA (2007) Chromium and its adverse effects on environment and human health. J Environ Biol 28(1):411–424

    Google Scholar 

  • Breslin CB, Branagan D, Garry LM (2019) Electrochemical detection of Cr(VI) with carbon nanotubes decorated with gold nanoparticles. J Appl Electrochem 49:195–205

    Article  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    Article  Google Scholar 

  • Chen L, Ma L, Bai Q, Zhu X, Zhang J, Wei Q et al (2014) Heavy metal-induced metallothionein expression is regulated by specific protein phosphatase 2A complexes. J Biol Chem 289(32):22413–22426

    Google Scholar 

  • Coogan TP, Motz J, Snyder CA, Squibb KS, Costa M (1991) Differential DNA-protein crosslinking in lymphocytes and liver following chronic drinking water exposure of rats to potassium chromate. Toxicol Appl Pharmacol 109(1):60–72

    Article  Google Scholar 

  • Das AP, Singh S (2011) Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med 15(1):6

    Article  Google Scholar 

  • DeLoughery Z, Luczak MW, Zhitkovich A (2014) Monitoring Cr intermediates and reactive oxygen species with fluorescent probes during chromate reduction. Chem Res Toxicol 27(5):843–851

    Article  Google Scholar 

  • Deng Y, Wang M, Tian T, Lin S, Xu P, Zhou L et al (2019) The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front Oncol 9:24

    Google Scholar 

  • Dharnaik AS, Ghosh PK (2014) Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process. Environ Technol 35(18):2272–2279

    Article  Google Scholar 

  • Dong G, Wang Y, Gong L, Wang M, Wang H, He N et al (2013) Formation of soluble Cr(III) end-products and nanoparticles during Cr(VI) reduction by Bacillus cereus strain XMCr-6. Biochem Eng J 70:166–172

    Google Scholar 

  • Duarte HA, Jha K, Weidner JW (1998) Electrochemical reduction of nitrates and nitrites in alkaline media in the presence of hexavalent chromium. J Appl Electrochem 28:811–817

    Article  Google Scholar 

  • Edwards KC, Kim H, Vincent JB (2020) Release of trivalent chromium from serum transferrin is sufficiently rapid to be physiologically relevant. J Inorg Biochem 202:110901

    Article  Google Scholar 

  • Elahi A, Arooj I, Bukhari DA, Rehman A (2020) Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol 104:3729–3743

    Article  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J

    Google Scholar 

  • Environmental Protection Agency (2019) National primary drinking water regulations. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

  • Escudero C, Fiol N, Villaescusa I (2006) Chromium sorption on grape stalks encapsulated in calcium alginate beads. Environ Chem Lett 4:239–242

    Article  Google Scholar 

  • Eskandari F (2020) Chromium toxicity and liver injury: a review of the literature. J Trace Elem Med Biol 58:126–131

    Google Scholar 

  • Fang Z, Zhao M, Zhen H, Chen L, Shi P, Huang Z (2014) Genotoxicity of tri-and hexavalent chromium compounds In vivo and their modes of action on DNA damage In vitro. Plos One 9(8):e103194

    Article  Google Scholar 

  • Ferreira LM, Cunha-Oliveira T, Sobral MC, Abreu PL, Alpoim MC, Urbano AM (2019) Impact of carcinogenic chromium on the cellular response to proteotoxic stress. Int J Mol Sci 20(19):4901

    Article  Google Scholar 

  • Flynn A (2014) Chromium toxicity and its impact on cardiovascular health. Nutr Metabol Insights 7:49–53

    Google Scholar 

  • Focardi S, Pepi M, Focardi SE (2013) Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. Biodegrad Life Sci 321–347

    Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418

    Article  Google Scholar 

  • Giagnorio M, Steffenino S, Meucci L, Zanetti MC, Tiraferri A (2018) Design and performance of a nanofiltration plant for the removal of chromium aimed at the production of safe potable water. J Environ Chem Eng 6(4):4467–4475

    Article  Google Scholar 

  • Guo S, Xiao C, Zhou N, Chi R (2021) Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ Chem Lett 19:1413–1431

    Article  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249:599–611

    Article  Google Scholar 

  • Hu J, Lo IM, Chen G (2007) Comparative study of various magnetic nanoparticles for Cr(VI) removal. Sep Purif Technol 56(3):249–256

    Article  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  Google Scholar 

  • International Agency for Research on Cancer (IARC) (1990) Chromium, nickel and welding. In: Monographs on the evaluation of carcinogenic risks to humans, pp 491–648

    Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere 207:255–266

    Article  Google Scholar 

  • Kaur G, Kaur J (2010) Chromium and its adverse effects on human health. Indian J Med Res 132(5):557

    Google Scholar 

  • Kieber RJ, Willey JD, Zvalaren SD (2002) Chromium speciation in rainwater: temporal variability and atmospheric deposition. Environ Sci Technol 36(24):5321–5327

    Article  Google Scholar 

  • Kim T, Kim TK, Zoh KD (2020) Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. J Water Process Eng 33:101109

    Article  Google Scholar 

  • Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M et al (2011) Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of Greece-an ecological study. Environ Health 10(1):1–8

    Google Scholar 

  • Loyaux-Lawniczak S, Lecomte P, Ehrhardt JJ (2001) Behavior of hexavalent chromium in a polluted groundwater: redox processes and immobilization in soils. Environ Sci Technol 35(7):1350–1357

    Article  Google Scholar 

  • Macfie A, Hagan E, Zhitkovich A (2010) Mechanism of DNA-protein cross-linking by chromium. Chem Res Toxicol 23(2):341–347

    Article  Google Scholar 

  • Machado R, Carvalho JR, Joana Neiva Correia M (2002) Removal of trivalent chromium (III) from solution by biosorption in cork powder. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 77(12):1340–1348

    Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C 34(1):1–32

    Article  Google Scholar 

  • Mishra A, Gupta B, Kumar N, Singh R, Varma A, Thakur IS (2020) Synthesis of calcite-based bio-composite biochar for enhanced biosorption and detoxification of chromium Cr(VI) by Zhihengliuella sp. ISTPL4. Bioresour Technol 307:123262

    Google Scholar 

  • National Toxicology Program (2011) Report on Carcinogens. Research Triangle Park, NC, U.S. Department of Health and Human Services, Public Health Service

    Google Scholar 

  • Noriega G, Caggiano E, Lecube ML, Cruz DS, Batlle A, Tomaro M, Balestrasse KB (2012) The role of salicylic acid in the prevention of oxidative stress elicited by cadmium in soybean plants. Biometals 25:1155–1165

    Article  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Gonçalves F, Pereira R (2015) Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquat Toxicol 165:172–178

    Article  Google Scholar 

  • Patlolla AK, Barnes C, Yedjou C, Velma VR, Tchounwou PB (2009) Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ Toxicol Int J 24(1):66–73

    Article  Google Scholar 

  • Pavesi T, Moreira JC (2020) Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol 40(9):1183–1197

    Article  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (1998) Cr (VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124(12):1165–1170

    Article  Google Scholar 

  • Powers J (2009) Chromium toxicity and its effects on glucose metabolism and insulin sensitivity. Diabetes Obes Metab 11(7):613–619

    Google Scholar 

  • Saba Anwar MI, Raza SH, Iqbal NAEEM (2013) Efficacy of seed preconditioning with salicylic and ascorbic acid in increasing vigor of rice (Oryza sativa L.) seedling. Pak J Bot 45(1):157–162

    Google Scholar 

  • Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 21(1):28–44

    Article  Google Scholar 

  • Schneider HJ, Waller DP, Svec F (2013) Chromium in human nutrition and health. Nutr Rev 71(8):548–558

    Google Scholar 

  • Schrauzer GN, Shrestha KP (2002) Chromium in the natural environment. Annu Rev Nutr 22(1):277–300

    Google Scholar 

  • Seidler A, Jähnichen S, Hegewald J, Fishta A, Krug O, Rüter L et al (2013) Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occupat Environ Health 86:943–955

    Google Scholar 

  • Shakoor MB, Ali S, Rizwan M, Abbas F, Bibi I, Riaz M, Rinklebe J (2020) A review of biochar-based sorbents for separation of heavy metals from water. Int J Phytorem 22(2):111–126

    Article  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  Google Scholar 

  • Sharma P, Bihari V, Agarwal SK, Verma V, Kesavachandran CN, Pangtey BS, Goel SK (2012) Groundwater contaminated with hexavalent chromium [Cr(VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). Plos One 7(10):e47877

    Article  Google Scholar 

  • Shi M, Li Z, Yuan Y, Yue T, Wang J, Li R, Chen J (2015) In situ oxidized magnetite membranes from 316L porous stainless steel via a two-stage sintering process for hexavalent chromium [Cr(VI)] removal from aqueous solutions. Chem Eng J 265:84–92

    Article  Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium(VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed Res Int

    Google Scholar 

  • Thompson CM, Proctor DM, Haws LC, Hébert CD, Grimes SD, Shertzer HG, Harris MA (2011) Investigation of the mode of action underlying the tumorigenic response induced in B6C3F1 mice exposed orally to hexavalent chromium. Toxicol Sci 123(1):58–70

    Article  Google Scholar 

  • Tian X, Zhang H, Zhao Y, Mehmood K, Wu X et al (2018) Transcriptome analysis reveals the molecular mechanism of hepatic metabolism disorder caused by chromium poisoning in chickens. Environ Sci Pollut Res 25:15411–15421

    Google Scholar 

  • Venter C, Oberholzer HM, Taute H, Cummings FR, Bester MJ (2015) An in ovo investigation into the hepatotoxicity of cadmium and chromium evaluated with light-and transmission electron microscopy and electron energy-loss spectroscopy. J Environ Sci Health Part A 50(8):830–838

    Article  Google Scholar 

  • Vilardi G, Di Palma L, Verdone N (2019) A physical-based interpretation of mechanism and kinetics of Cr(VI) reduction in aqueous solution by zero-valent iron nanoparticles. Chemosphere 220:590–599

    Article  Google Scholar 

  • Wakeman TP, Yang A, Dalal NS, Boohaker RJ, Zeng Q, Ding Q, Xu B (2017) DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget 8(48):83975

    Article  Google Scholar 

  • Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Shi X (2012) Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 262(1):11–21

    Article  Google Scholar 

  • Wang H, Na C (2014) Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl Mater Interfaces 6(22):20309–20316

    Article  Google Scholar 

  • Wang Y (2019) Hexavalent chromium and its impact on lung cancer risk. Environ Res 170:138–145

    Google Scholar 

  • Welling R, Beaumont JJ, Petersen SJ, Alexeeff GV, Steinmaus C (2015) Chromium VI and stomach cancer: a meta-analysis of the current epidemiological evidence. Occup Environ Med 72(2):151–159

    Article  Google Scholar 

  • Wilhelm T, Said M, Naim V (2020) DNA replication stress and chromosomal instability: dangerous liaisons. Genes 11(6):642

    Article  Google Scholar 

  • World Health Organisation (1990) Chromium (Environmental Health Criteria 61) international programme on chemical safety. Switzerland, Geneva

    Google Scholar 

  • Xiao F, Feng X, Zeng M, Guan L, Hu Q, Zhong C (2012) Hexavalent chromium induces energy metabolism disturbance and p53-dependent cell cycle arrest via reactive oxygen species in L-02 hepatocytes. Mol Cell Biochem 371:65–76

    Article  Google Scholar 

  • Yang W, Song W, Li J, Zhang X (2020) Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere 249:126134

    Article  Google Scholar 

  • Yao H, Guo L, Jiang BH, Luo J, Shi X (2008) Oxidative stress and chromium(VI) carcinogenesis. J Environ Pathol Toxicol Oncol 27(2)

    Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943

    Article  Google Scholar 

  • Zamboulis D, Pataroudi SI, Zouboulis AI, Matis KA (2004) The application of sorptive flotation for the removal of metal ions. Desalination 162:159–168

    Article  Google Scholar 

  • Zengin F (2014) Exogenous treatment with salicylic acid alleviating copper toxicity in bean seedlings. Proc Natl Acad Sci India Sect B: Biol Sci 84:749–755

    Article  Google Scholar 

  • Zhao Y, Zhang H, Wu X, Zhang T, Shen K, Li L et al (2019) Metabonomic analysis of the hepatic injury suffer from hexavalent chromium poisoning in broilers. Environ Sci Pollut Res 26:18181–18190

    Google Scholar 

  • Zhitkovich A (2005) Importance of chromium–DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 1(18):3–11

    Article  Google Scholar 

  • Zhou Y (2017) Chromium in drinking water and the risk of gastric cancer: a systematic review. Environ Res 155:662–668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pathak, A., Asediya, V., Anjaria, P., Singh, S.P. (2023). Health Risk Linked to Cr Toxicity in Food and Environment. In: Kumar, N., Walther, C., Gupta, D.K. (eds) Chromium in Plants and Environment. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-44029-8_10

Download citation

Publish with us

Policies and ethics