Skip to main content

A Numerical Comparison of Lagrange and Kane’s Method for Modeling and Crashworthiness Assessment of a Modified Vehicle

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2022)

Abstract

Modeling of vehicle crash events has been a challenge for researchers for several decades. Lumped Parameter Models (LPM) offer solutions to engineering problems using purely time-dependent variables and have been applied in several studies to replicate a crash event. One of the limitations to LPM is the modeling of material and geometrical non-linearities; this study presents an LPM of a modified vehicle (welds and heat treatment on the vehicle structural members) undergoing an impact. The 3 DOF system uses an elastic double compound pendulum with a torsional spring. The governing equations are defined using Lagrangian and Kane’s method and the simulations are validated against an FE model of a modified vehicle. It is observed that the two methods produce reliable results for predicting the parameters contributing to injuries in a crash; however, Kane’s method shows an improved correlation against the FE model.

Supported by University of Agder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crash Simulation Vehicle Models | NHTSA. https://www.nhtsa.gov/crash-simulation-vehicle-models

  2. Benson, D., Hallquist, J., Igarashi, M., Shimomaki, K., Mizuno, M.: Application of DYNA3D in large scale crashworthiness calculations (1986)

    Google Scholar 

  3. Cheng, Q., Zhou, L., Li, K.: A self-stabilized inverted pendulum made of optically responsive liquid crystal elastomers. Front. Robot. AI 8, 407 (2022). https://doi.org/10.3389/FROBT.2021.808262/BIBTEX

    Article  Google Scholar 

  4. Cyrén, O., Johansson, S.: Modeling of occupant kinematic response in pre-crash maneuvers a simplified human 3D-model for simulation of occupant kinematics in maneuvers. Technical report (2018)

    Google Scholar 

  5. Duan, S.: A comparison case study for dynamics analysis methods in applied multibody dynamics. Technical report (2006)

    Google Scholar 

  6. Elkady, M., Elmarakbi, A.: Modelling and analysis of vehicle crash system integrated with different VDCS under high speed impacts. Cent. Eur. J. Eng. 2(4), 585–602 (2012). https://doi.org/10.2478/S13531-012-0035-Z

    Article  Google Scholar 

  7. Elkady, M., Elmarakbi, A., Macintyre, J.: Enhancement of vehicle safety and improving vehicle yaw behaviour due to offset collision using vehicle dynamics. Int. J. Veh. Saf. 6(2), 110–133 (2012). https://doi.org/10.1504/IJVS.2012.049011

    Article  Google Scholar 

  8. Goldstein, H., Poole, C., Safko, J., Addison, S.R.: Classical Mechanics, 3rd ed. Am. J. Phys. 70(7), 782–783 (2002). https://doi.org/10.1119/1.1484149

    Article  Google Scholar 

  9. Hussain, Z., Azlan, N.Z.: KANE’s method for dynamic modeling. In: Proceedings - 2016 IEEE International Conference on Automatic Control and Intelligent Systems, I2CACIS 2016, pp. 174–179. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/I2CACIS.2016.7885310

  10. Kamal, M.M.: Analysis and simulation of vehicle to barrier impact. In: SAE Technical Papers. SAE International (1970). https://doi.org/10.4271/700414

  11. Kane, T.R., Levinson, D.A.: Dynamics theory and applications. Technical report (1985). http://dspace.library.cornell.edu/handle/1813/62

  12. Kwuimy, C.A., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53(3), 201–213 (2008). https://doi.org/10.1007/S11071-007-9308-0/METRICS

    Article  MATH  Google Scholar 

  13. Leung, A.Y., Kuang, J.L.: On the chaotic dynamics of a spherical pendulum with a harmonically vibrating suspension. Nonlinear Dyn. 43(3), 213–238 (2006). https://doi.org/10.1007/S11071-006-7426-8/METRICS

    Article  MathSciNet  MATH  Google Scholar 

  14. Marzougui, D., Brown, D., Park, H.K., Kan, C.D., Opiela, K.S.: Development and validation of a finite element model for a mid-sized passenger sedan. In: Proceedings of the 3th International LS-DYNA Users Conference Session: Automotive, pp. 8–10 (2014)

    Google Scholar 

  15. Mentzer, S.G., Radwan, R.A., Hollowell, W.T.: The SISAME methodology for extraction of optimal lumped parameter structural crash models. Tech. rep, SAE Technical Paper (1992)

    Google Scholar 

  16. Mogo, J.B., Woafo, P.: Dynamics of a nonlinear electromechanical device with a pendulum arm. J. Comput. Nonlinear Dyn. 2(4), 374–378 (2007). https://doi.org/10.1115/1.2756080

    Article  Google Scholar 

  17. Mogo, J.B., Woafo, P.: Dynamics of a cantilever arm actuated by a nonlinear electrical circuit. Nonlinear Dyn. 63(4), 807–818 (2011). https://doi.org/10.1007/S11071-010-9839-7/METRICS

    Article  Google Scholar 

  18. Mohamed Sah, S., McGehee, C.C., Mann, B.P.: Dynamics of a horizontal pendulum driven by high-frequency rocking. J. Sound Vib. 332(24), 6505–6518 (2013). https://doi.org/10.1016/J.JSV.2013.07.015

    Article  Google Scholar 

  19. Noorsumar, G., Robbersmyr, K., Rogovchenko, S., Vysochinskiy, D.: Crash response of a repaired vehicle - influence of welding UHSS members. In: WCX SAE World Congress Experience. SAE International (2020). https://doi.org/10.4271/2020-01-0197

  20. Noorsumar, G., Rogovchenko, S., Robbersmyr, K.G., Vysochinskiy, D.: Mathematical models for assessment of vehicle crashworthiness: a review (2021). https://doi.org/10.1080/13588265.2021.1929760

  21. Noorsumar, G., Rogovchenko, S., Robbersmyr, K.G., Vysochinskiy, D.: Vehicle crashworthiness performance in frontal impact: mathematical model using elastic pendulum. Mech. Res. Commun. 124 (2022). https://doi.org/10.1016/j.mechrescom.2022.103954

  22. Noorsumar, G., Rogovchenko, S., Robbersmyr, K.G., Vysochinskiy, D., Klausen, A.: A novel technique for modeling vehicle crash using lumped parameter models. In: Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, SIMULTECH 2021, pp. 62–70 (2021). https://doi.org/10.5220/0010529200620070

  23. Noorsumar, G., Rogovchenko, S., Vysochinskiy, D., Robbersmyr, K.: Modeling of Modified Vehicle Crashworthiness using a Double Compound Pendulum. In: 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 102–111 (2022). https://doi.org/10.5220/0011306100003274

  24. Notué Kadjie, A., Nwagoum Tuwa, P.R., Woafo, P.: An electromechanical pendulum robot arm in action: dynamics and control. Shock Vibr. 2017 (2017). https://doi.org/10.1155/2017/3979384

  25. Promotionsausschuss, V., Liu, Q.: Modelling, distributed identification and control of spatially-distributed systems with application to an actuated beam. Technical report (2015)

    Google Scholar 

  26. Sartori Junior, S., Balthazar, J.M., Pontes Junior, B.R.: Non-linear dynamics of a tower orchard sprayer based on an inverted pendulum model. Biosyst. Eng. 103(4), 417–426 (2009). https://doi.org/10.1016/J.BIOSYSTEMSENG.2008.09.003

    Article  Google Scholar 

  27. Savaresi, S., Poussot-Vassal, C., Spelta, C., Sename, O., Dugard, L.: Semi-Active Suspension Control Design for Vehicles (2010). https://doi.org/10.1016/C2009-0-63839-3

  28. Sham Rambely, A., Halim, N.A., Rozita Ahmad, R.: A numerical comparison of langrange and Kane’s methods of AN arm segment. Int. J. Mod. Phys. Conf. Ser. 9, 68–75 (2011)

    Article  Google Scholar 

  29. Singla, A., Singh, G.: Real-time swing-up and stabilization control of a cart-pendulum system with constrained cart movement. Int. J. Nonlinear Sci. Numer. Simul. 18(6), 525–539 (2017). https://doi.org/10.1515/ijnsns-2017-0040

    Article  MathSciNet  MATH  Google Scholar 

  30. Sypniewska-Kamińska, G., Starosta, R., Awrejcewicz, J.: Double pendulum colliding with a rough obstacle. In: Dynamical Systems - Mechatronics and Life Sciences. Instytut Mechaniki Stosowanej, Wydział Budowy Maszyn i Zarza̧dzania, Politechnika Poznańska (2016)

    Google Scholar 

  31. Sypniewska-Kamińska, G., Starosta, R., Awrejcewicz, J.: Motion of double pendulum colliding with an obstacle of rough surface. Arch. Appl. Mech. 87, 841–852 (2017). https://doi.org/10.1007/s00419-017-1230-4

    Article  Google Scholar 

  32. Vlase, S., Negrean, I., Marin, M., Năstac, S.: Kane’s method-based simulation and modeling robots with elastic elements, using finite element method. Mathematics 8(5), 805 (2020). https://doi.org/10.3390/MATH8050805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Noorsumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noorsumar, G., Rogovchenko, S., Vysochinskiy, D., Robbersmyr, K.G. (2023). A Numerical Comparison of Lagrange and Kane’s Method for Modeling and Crashworthiness Assessment of a Modified Vehicle. In: Wagner, G., Werner, F., De Rango, F. (eds) Simulation and Modeling Methodologies, Technologies and Applications. SIMULTECH 2022. Lecture Notes in Networks and Systems, vol 780. Springer, Cham. https://doi.org/10.1007/978-3-031-43824-0_9

Download citation

Publish with us

Policies and ethics