Skip to main content

Algae for Aquaculture: Recent Technological Applications

  • Chapter
  • First Online:
Value-added Products from Algae

Abstract

Algae are essential in aquatic ecosystems as they form the base of food webs, providing bioactive compounds that sustain and improve the growth of commercially important aquatic animals. However, it is critical to provide the required quality and quantity of specific algae strains for each aquatic animal throughout their life cycles on a commercial scale. In sustainable aquaculture, algae, including microalgae and seaweed, could be introduced to aquaculture animals in different forms, such as live, dried, liquid extract, and nanoparticle forms. These forms enhance the benefits of algae bioactive compounds for aquatic animals. The world requires cost-effective, environmentally friendly, and feasible technologies for large-scale production of aquaculture organisms. The integration of algae and animals in sustainable aquaculture offers an intelligent solution to the challenges faced in monoaquaculture. This chapter focuses on different algal forms in aquaculture, including live feeds, biomass concentrates, water conditioners using the “green water technique,” aqua-feed additives, co-culturing technologies, and integrated multi-trophic aquaculture (IMTA) to encourage the development of low-cost, highly efficient, and sustainable aquaculture projects in the future. Overall, understanding the role of microalgae in sustainable aquaculture is crucial for improving the growth and health of aquatic animals and for maintaining the ecological balance of aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaty M, Al-Solami L, Al-Harbi M, Abu El-Regal M (2021) Utilization of different types of microalgae to improve hatcheries production of the sea cucumber Holothuria scabra Jaeger, 1833 in the Red Sea, Egypt. Egyptian J Aquatic Biol Fish 25(2):193–204

    Article  Google Scholar 

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312(1-4):77–87

    Article  Google Scholar 

  • Abualnaja KM, Alprol AE, Abu-Saied MA, Ashour M, Mansour AT (2021) Removing of anionic dye from aqueous solutions by adsorption using of multiwalled carbon nanotubes and poly (Acrylonitrile-styrene) impregnated with activated carbon. Sustainability 13(13):7077

    Article  CAS  Google Scholar 

  • Abu-Dief AM, Alsehli M, Al-Enizi A, Nafady A (2022) Recent advances in mesoporous silica nanoparticles for targeted drug delivery applications. Current Drug Delivery 19(4):436–450

    Article  CAS  PubMed  Google Scholar 

  • Agarwal A, Mhatre A, Pandit R, Lali AM (2020) Synergistic biorefinery of Scenedesmus obliquus and Ulva lactuca in poultry manure towards sustainable bioproduct generation. Bioresour Technol 297:122462

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Hassan W, S., Banat, F. (2022) An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered 13(4):9521–9547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MA, Xu J-L, Wang Z (2020) Microalgae biotechnology for food, health and high value products. Springer, Berlin

    Book  Google Scholar 

  • Albentosa M, Perez-Camacho A, Labarta U, Beiras R, Fernàndez-Reiriz MJ (1993) Nutritional value of algal diets to clam spat Venerupis pullastra. Mar Ecol Prog Ser 97:261–269

    Article  Google Scholar 

  • Albentosa M, Labarta U, Pérez-Camacho A, Fernández-Reiriz MJ, Beiras R (1994) Fatty acid composition of Venerupis pullastra spat fed on different microalgae diets. Comp Biochem Physiol A Physiol 108(4):639–648

    Article  Google Scholar 

  • Alfaro AC, Jeffs AG, Creese RG (2004) Bottom-drifting algal/mussel spat associations along a sandy coastal region in northern New Zealand. Aquaculture 241(1–4):269–290

    Article  Google Scholar 

  • Alprol AE, Heneash AMM, Ashour M, Abualnaja KM, Alhashmialameer D, Mansour AT, Sharawy ZZ, Abu-Saied MA, Abomohra AE (2021a) Potential applications of Arthrospira platensis lipid-free biomass in bioremediation of organic dye from industrial textile effluents and its influence on marine rotifer (Brachionus plicatilis). Materials (Basel) 14(16):4446

    Article  CAS  PubMed  Google Scholar 

  • Alprol AE, Heneash AMM, Soliman AM, Ashour M, Alsanie WF, Gaber A, Mansour AT (2021b) Assessment of water quality, eutrophication, and zooplankton community in lake burullus, Egypt. Diversity 13(6):268

    Article  CAS  Google Scholar 

  • Altaff K, Vijayaraj R (2021) Micro-algal diet for copepod culture with reference to their nutritive value–a review. Int J Cur Res Rev| 13(7):86

    Article  CAS  Google Scholar 

  • Amjad S, Jones D (1992) An evaluation of artificial larval diets used in the culture of penaeid shrimp larvae Penaeus monodon (Fabricius). Pakistan J Zool 24:135–135

    Google Scholar 

  • Ananth S, Santhanam P (2019) Intensive culture, biochemical composition analysis, and use of zooplankton tisbe sp. (Copepoda: Harpacticoida) as an alternative live feed for shrimp larviculture. In: Basic and applied zooplankton biology. Springer, Berlin, pp 329–362

    Chapter  Google Scholar 

  • Anh NTN, Vinh NH, An BNT, Lan LM, Hai TN (2020) Polyculture culture of black tiger shrimp Penaeus monodon and red seaweed Gracilaria tenuistipitata under different densities: effects on water quality, post-larvae performance and their resistance against Vibrio parahaemolyticus. J Appl Phycol 32(6):4333–4345

    Article  CAS  Google Scholar 

  • Ansari FA, Guldhe A, Gupta SK, Rawat I, Bux F (2021) Improving the feasibility of aquaculture feed by using microalgae. Environ Sci Pollut Res 28(32):43234–43257

    Article  CAS  Google Scholar 

  • Ansarifard F, Rajabi Islami H, Shamsaie Mehrjan M, Soltani M (2018) Effects of Arthrospira platensis on growth, skin color and digestive enzymes of Koi, Cyprinus carpio. Iran J Fish Sci 17(2):381–393

    Google Scholar 

  • Aranda-Burgos JA, da Costa F, Nóvoa S, Ojea J, Martínez-Patiño D (2014) Effects of microalgal diet on growth, survival, biochemical and fatty acid composition of Ruditapes decussatus larvae. Aquaculture 420:38–48

    Article  Google Scholar 

  • Ashour M, Mabrouk MM, Ayoub HF, El-Feky MMMM, Zaki SZ, Hoseinifar SH, Rossi W, Van Doan H, El-Haroun E, Goda AMAS (2020) Effect of dietary seaweed extract supplementation on growth, feed utilization, hematological indices, and non-specific immunity of Nile Tilapia, Oreochromis niloticus challenged with Aeromonas hydrophila. J Appl Phycol 32(5):3467–3479

    Article  CAS  Google Scholar 

  • Ashour M, Alprol AE, Heneash AMM, Saleh H, Abualnaja KM, Alhashmialameer D, Mansour AT (2021) Ammonia bioremediation from aquaculture wastewater effluents using Arthrospira platensis NIOF17/003: impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials (Basel) 14(18):5460

    Article  CAS  PubMed  Google Scholar 

  • Awasthi MK, Sarsaiya S, Patel A, Juneja A, Singh RP, Yan B, Awasthi SK, Jain A, Liu T, Duan Y, Pandey A, Zhang Z, Taherzadeh MJ (2020) Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sust Energ Rev 127:109876

    Article  Google Scholar 

  • Barakat KM, El-Sayed HS, Khairy HM, El-Sheikh MA, Al-Rashed SA, Arif IA, Elshobary ME (2021) Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota. Saudi J Biological Sci 28(9):5106–5114

    Article  CAS  Google Scholar 

  • Barkia I, Saari N, Manning SR (2019) Microalgae for high-value products towards human health and nutrition. Marine drugs 17(5):304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barra L, Chandrasekaran R, Corato F, Brunet C (2014) The challenge of ecophysiological biodiversity for biotechnological applications of marine microalgae. Marine drugs 12(3):1641–1675

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista S, Pereira R, Oliveira B, Baião LF, Jessen F, Tulli F, Messina M, Silva JL, Abreu H, Valente LM (2020) Exploring the potential of seaweed Gracilaria gracilis and microalga Nannochloropsis oceanica, single or blended, as natural dietary ingredients for European seabass Dicentrarchus labrax. J Appl Phycol 32:2041–2059

    Article  CAS  Google Scholar 

  • Becker EW (2013) Microalgae for aquaculture: nutritional aspects. In: Handbook of microalgal culture: applied phycology and biotechnology. John Wiley and Sons, Hoboken, pp 671–691

    Chapter  Google Scholar 

  • Biao X, Kaijin Y (2007) Shrimp farming in China: operating characteristics, environmental impact and perspectives. Ocean Coast Manag 50(7):538–550

    Article  Google Scholar 

  • Bordbar S, Anwar F, Saari N (2011) High-value components and bioactives from sea cucumbers for functional foods—a review. Marine drugs 9(10):1761–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brito LO, Arantes R, Magnotti C, Derner R, Pchara F, Olivera A, Vinatea L (2014) Water quality and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in co-culture with green seaweed Ulva lactuca (Linaeus) in intensive system. Aquac Int 22(2):497–508

    Article  CAS  Google Scholar 

  • Brown M, Robert R (2002) Preparation and assessment of microalgal concentrates as feeds for larval and juvenile Pacific oyster (Crassostrea gigas). Aquaculture 207(3-4):289–309

    Article  Google Scholar 

  • Buitrago E (1992) Concentración y preservación de microalgas como reserva de alimento de organismos marinos cultivados. Prog Iberoam Cienc Tec Subprog II—Acuicultura, CYTED-D 1:47–53

    Google Scholar 

  • Camus T, Zeng C (2010) Roles of microalgae on total egg production over female lifespan and egg incubation time, naupliar and copepodite survival, sex ratio and female life expectancy of the copepod Bestiolina similis. Aquac Res 41(11):1717–1726

    Article  Google Scholar 

  • Carboni S, Vignier J, Chiantore M, Tocher DR, Migaud H (2012) Effects of dietary microalgae on growth, survival and fatty acid composition of sea urchin Paracentrotus lividus throughout larval development. Aquaculture 324:250–258

    Article  Google Scholar 

  • Cardinaletti G, Messina M, Bruno M, Tulli F, Poli B, Giorgi G, Chini-Zittelli G, Tredici M, Tibaldi E (2018) Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture 485:173–182

    Article  CAS  Google Scholar 

  • Cardoso LG, Duarte JH, Andrade BB, Lemos PVF, Costa JAV, Druzian JI, Chinalia FA (2020) Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production. Aquaculture 525:735272

    Article  CAS  Google Scholar 

  • Casas-Valdez M, Hernández-Contreras H, Marin-Alvarez A, Aguila-Ramirez R, Hernández-Guerrero C, Sánchez-Rodríguez I, Carrillo-Domínguez S (2006) The seaweed Sargassum (Sargassaceae) as tropical alternative for goats’ feeding. Rev Biol Trop 54(1):83–92

    Article  CAS  PubMed  Google Scholar 

  • Cerezuela R, Guardiola FA, Meseguer J, Esteban MA (2012) Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiol Biochem 38(6):1729–1739

    Article  CAS  PubMed  Google Scholar 

  • Ceyhan V, Emir M (2015) Structural and economic analysis of Turkish fishmeal and fish oil. Turk J Fish Aquat Sci 15(4):841–850

    Google Scholar 

  • Chauton MS, Reitan KI, Norsker NH, Tveterås R, Kleivdal HT (2015) A techno-economic analysis of industrial production of marine microalgae as a source of EPA and DHA-rich raw material for aquafeed: research challenges and possibilities. Aquaculture 436:95–103

    Article  CAS  Google Scholar 

  • Chávez-Crooker P, Obreque-Contreras J (2010) Bioremediation of aquaculture wastes. Curr Opin Biotechnol 21(3):313–317

    Article  PubMed  Google Scholar 

  • Chen C-L, Chang J-S, Lee D-J (2015) Dewatering and drying methods for microalgae. Dry Technol 33(4):443–454

    Article  CAS  Google Scholar 

  • Chen B, Wan C, Mehmood MA, Chang J-S, Bai F, Zhao X (2017) Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–a review. Bioresour Technol 244:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Zeng C, Jerry DR, Cobcroft JM (2020) Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Rev Aquac 12(3):1518–1541

    Article  CAS  Google Scholar 

  • Chithambaran S, Harbi M, Broom M, Khobrani K, Ahmad O, Fattani H, Sofyani A, Ayaril N (2017) Green water technology for the production of Pacific white shrimp Penaeus vannamei (Boone, 1931). Indian J Fish 64(3):43–49

    Article  Google Scholar 

  • Cottier-Cook EJ, Nagabhatla N, Asri A, Beveridge M, Bianchi P, Bolton J, Bondad-Reantaso MG, Brodie J, Buschmann A, Cabarubias J (2021) Ensuring the sustainable future of the rapidly expanding global seaweed aquaculture industry–a vision. UNU Institute on Comparative Regional Integration Studies.

    Google Scholar 

  • Coutinho P, Rema P, Otero A, Pereira O, Fábregas J (2006) Use of biomass of the marine microalga Isochrysis galbana in the nutrition of goldfish (Carassius auratus) larvae as source of protein and vitamins. Aquac Res 37(8):793–798

    Article  CAS  Google Scholar 

  • Das BK, Pradhan J, Sahu S (2009) The effect of Euglena viridis on immune response of rohu, Labeo rohita (Ham.). Fish Shellfish Immunol 26(6):871–876

    Article  CAS  PubMed  Google Scholar 

  • Delgado E, Reyes-Jaquez D (2018) Extruded aquaculture feed: a review. In: Extrusion of metals, polymers and food products. InTechOpen, London, pp 145–163

    Google Scholar 

  • Delgado E, Valles-Rosales DJ, Flores NC, Reyes-Jáquez D (2021) Evaluation of fish oil content and cottonseed meal with ultralow gossypol content on the functional properties of an extruded shrimp feed. Aquac Rep 19:100588

    Article  Google Scholar 

  • Dineshbabu G, Goswami G, Kumar R, Sinha A, Das D (2019) Microalgae–nutritious, sustainable aqua-and animal feed source. J Funct Foods 62:103545

    Article  CAS  Google Scholar 

  • Dobberfuhl DR, Elser JJ (1999) Use of dried algae as a food source for zooplankton growth and nutrient release experiments. J Plan Res 21(5)

    Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88(10):3331–3335

    Article  CAS  Google Scholar 

  • Duy NDQ, Francis DS, Southgate PC (2017) The nutritional value of live and concentrated micro-algae for early juveniles of sandfish, Holothuria scabra. Aquaculture 473:97–104

    Article  Google Scholar 

  • Dworjanyn SA, Pirozzi I, Liu W (2007) The effect of the addition of algae feeding stimulants to artificial diets for the sea urchin Tripneustes gratilla. Aquaculture 273(4):624–633

    Article  Google Scholar 

  • El-Gamal MM, Othman SI, Abdel-Rahim MM, Mansour AT, Alsaqufi AS, El Atafy MM, Mona MH, Allam AA (2020) Palaemon and artemia supplemented diet enhances sea bass, Dicentrarchus labrax, broodstock reproductive performance and egg quality. Aquacult Rep 16:100290

    Google Scholar 

  • El-Khodary GM, El-Sayed HS, Khairy HM, El-Sheikh MA, Qi X, Elshobary ME (2021) Comparative study on growth, survival and pigmentation of Solea aegyptiaca larvae by using four different microalgal species with emphasize on water quality and nutritional value. Aquac Nutr 27(2):615–629

    Article  CAS  Google Scholar 

  • El-Sayed HS, Elshobary ME, Barakat KM, Khairy HM, El-Sheikh MA, Czaja R, Allam B, Senousy HH (2022) Ocean acidification induced changes in Ulva fasciata biochemistry may improve Dicentrarchus labrax aquaculture via enhanced antimicrobial activity. Aquaculture 560:738474

    Article  CAS  Google Scholar 

  • El-Seesy AI, Elshobary ME, He Z (2022) Biofuel versus fossil fuel. In: Handbook of algal biofuels. Elsevier, Amsterdam, pp 181–193

    Chapter  Google Scholar 

  • Elshobary ME, Abo-Shady AM, Khairy HM, Essa D, Zabed HM, Qi X, Abomohra AE-F (2019) Influence of nutrient supplementation and starvation conditions on the biomass and lipid productivities of Micractinium reisseri grown in wastewater for biodiesel production. J Environ Manag 250:109529

    Article  CAS  Google Scholar 

  • Elshobary ME, Essa DI, Attiah AM, Salem ZE, Qi X (2020) Algal community and pollution indicators for the assessment of water quality of Ismailia canal, Egypt. Stoch Environ Res Risk Assess 34:1089–1103

    Article  Google Scholar 

  • Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality 5:92–109

    Google Scholar 

  • Erbland P, Caron S, Peterson M, Alyokhin A (2020) Design and performance of a low-cost, automated, large-scale photobioreactor for microalgae production. Aquac Eng 90:102103

    Article  Google Scholar 

  • Falaise C, François C, Travers M-A, Morga B, Haure J, Tremblay R, Turcotte F, Pasetto P, Gastineau R, Hardivillier Y (2016) Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Marine drugs 14(9):159

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture 2020. Sustainability in action. FAO, Rome

    Google Scholar 

  • Ferdouse F, Holdt SL, Smith R, Murúa P, Yang Z (2018) The global status of seaweed production, trade and utilization. Globefish Res Programme 124:I

    Google Scholar 

  • Fernández FA, Sevilla JMF, Grima EM (2019) Costs analysis of microalgae production. In: Biofuels from algae. Elsevier, Amsterdam, pp 551–566

    Chapter  Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Mar Biotechnol 11(5):585–595

    Article  CAS  Google Scholar 

  • Floreto EA, Teshima S-I, Ishikawa M (1996) The Effects of seaweed diets on the growth, lipid and acids of juveniles of the white sea Urchin Tripneustes gratilla. Fish Sci 62(4):589–593

    Article  CAS  Google Scholar 

  • García-Ortega A, Martínez-Steele L, Gonsalves D, Wall MM, Sarnoski PJ (2015) Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus. J Aquac Eng Fish Res 1(4):144–154

    Article  Google Scholar 

  • García-Poza S, Leandro A, Cotas C, Cotas J, Marques JC, Pereira L, Gonçalves AM (2020) The evolution road of seaweed aquaculture: Cultivation technologies and the industry 4.0. Int J Environ Res Public Health 17(18):6528

    Article  PubMed  PubMed Central  Google Scholar 

  • Garti N, McClements DJ (2012) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Elsevier, Amsterdam

    Book  Google Scholar 

  • Globenewswire (2021) Microalgae-based products market forecast to 2028. https://www.globenewswire.com/.

  • Gong Y, Guterres H, Huntley M, Sørensen M, Kiron V (2018) Digestibility of the defatted microalgae N annochloropsis sp. and D esmodesmus sp. when fed to A tlantic salmon, S almo salar. Aquac Nutr 24(1):56–64

    Article  CAS  Google Scholar 

  • Granada L, Sousa N, Lopes S, Lemos MF (2016) Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?–a review. Rev Aquac 8(3):283–300

    Article  Google Scholar 

  • Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Mancini Filho J, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120(2):585–590

    Article  CAS  Google Scholar 

  • Guedes AC, Sousa-Pinto I, Malcata FX (2015) Application of microalgae protein to aquafeed. In: Handbook of marine microalgae. Elsevier, Amsterdam, pp 93–125

    Chapter  Google Scholar 

  • Hamdi M (2022) Wastewaters treatment and algal biomass production by using innovative multitrophic airlift raceway reactor (MA2R) without O2 supply and CO2 release (ICSEWEN19). In: Sustainable energy-water-environment nexus in deserts: proceeding of the first international conference on sustainable energy-water-environment nexus in desert climates. Springer, Berlin, pp 591–596

    Chapter  Google Scholar 

  • Heasman M, Diemar J, O'connor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquac Res 31(8-9):637–659

    Google Scholar 

  • Hoffman J, Pate RC, Drennen T, Quinn JC (2017) Techno-economic assessment of open microalgae production systems. Algal Res 23:51–57

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  PubMed  Google Scholar 

  • Ianora A, Romano G, Carotenuto Y, Esposito F, Roncalli V, Buttino I, Miralto A (2011) Impact of the diatom oxylipin 15S-HEPE on the reproductive success of the copepod Temora stylifera. Hydrobiologia 666(1):265–275

    Article  CAS  Google Scholar 

  • Javed MR, Bilal MJ, Ashraf MUF, Waqar A, Mehmood MA, Saeed M, Nashat N (2019) Microalgae as a feedstock for biofuel production: current status and future prospects. In: Top 5 contributions energy research and development. Springer, Cham, pp 1–39

    Google Scholar 

  • Jimenez BD, Gaid RD, Jimenez CR (2016) Microalgal profile and anti-Vibrio activity of crude extracts from green water reservoir stocked with tilapia. Int J Adv Agric Environ Eng 3(2):259–262

    Google Scholar 

  • Jothiraj K, Santhanam P (2019) Optimisation of the culture conditions of Nannocalanus minor (Copepoda: Calanoida). In: Basic and applied zooplankton biology. Springer, Berlin, pp 225–246

    Chapter  Google Scholar 

  • Kalasariya HS, Patel RV, Pandya KY, Jasrai R, Brahmbhatt NH (2016) A review on nutritional facets of seaweeds. Int J Chem Sci Technol 1:27–32

    Google Scholar 

  • Kang YH, Park SR, Chung IK (2011) Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae 26(1):97–108

    Google Scholar 

  • Kaparapu J (2018) Application of microalgae in aquaculture. Phykos 48(1):21–26

    Google Scholar 

  • Kasimala M, Mogos G, Negasi K, Bereket G, Abdu M, Melake H (2020) Biochemical composition of selected seaweeds from intertidal shallow waters of Southern Red Sea, Eritrea. IJMS 49(7):1153–1157

    Google Scholar 

  • Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA (2022) Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 293:133571

    Article  CAS  PubMed  Google Scholar 

  • Kiron V, Phromkunthong W, Huntley M, Archibald I, De Scheemaker G (2012) Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquac Nutr 18(5):521–531

    Article  CAS  Google Scholar 

  • Knuckey RM, Semmens GL, Mayer RJ, Rimmer MA (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249(1-4):339–351

    Article  Google Scholar 

  • Knuckey RM, Brown MR, Robert R, Frampton DM (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35(3):300–313

    Article  Google Scholar 

  • Kokou F, Makridis P, Kentouri M, Divanach P (2012) Antibacterial activity in microalgae cultures. Aquac Res 43(10):1520–1527

    Article  Google Scholar 

  • Koldewey H (2005) Syngnathid husbandry in public aquariums 2005 manual. Project Seahorse, London, UK

    Google Scholar 

  • Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:1–16

    Article  Google Scholar 

  • Limbu SM, Zhou L, Sun S-X, Zhang M-L, Du Z-Y (2018) Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ Int 115:205–219

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Lv J, Feng J, Liu Q, Nan F, Xie S (2019) Treatment of real aquaculture wastewater from a fishery utilizing phytoremediation with microalgae. J Chem Technol Biotechnol 94(3):900–910

    Article  CAS  Google Scholar 

  • Liu C, Li Y, Chen Z, Yuan L, Liu H, Han D, Jin J, Yang Y, Hu Q, Zhu X (2021) Effects of dietary whole and defatted Arthrospira platensis (Cyanobacterium) on growth, body composition and pigmentation of the yellow catfish Pelteobagrus fulvidraco. J Appl Phycol 33(4):2251–2259

    Article  CAS  Google Scholar 

  • Lyons DA, Scheibling RE (2007) Effect of dietary history and algal traits on feeding rate and food preference in the green sea urchin Strongylocentrotus droebachiensis. J Exp Mar Biol Ecol 349(1):194–204

    Article  Google Scholar 

  • Mabrouk MM, Ashour M, Labena A, Zaki MAA, Abdelhamid AF, Gewaily MS, Dawood MAO, Abualnaja KM, Ayoub HF (2022) Nanoparticles of Arthrospira platensis improves growth, antioxidative and immunological responses of Nile tilapia (Oreochromis niloticus) and its resistance to Aeromonas hydrophila. Aquac Res 53(1):125–135

    Article  CAS  Google Scholar 

  • Machado M, Machado S, Pimentel FB, Freitas V, Alves RC, Oliveira M (2020) Amino acid profile and protein quality assessment of macroalgae produced in an integrated multi-trophic aquaculture system. Foods 9(10):1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maehre HK, Edvinsen GK, Eilertsen K-E, Elvevoll EO (2016) Heat treatment increases the protein bioaccessibility in the red seaweed dulse (Palmaria palmata), but not in the brown seaweed winged kelp (Alaria esculenta). J Appl Phycol 28:581–590

    Article  CAS  Google Scholar 

  • Magouz FI, Essa MA, Matter M, Tageldein Mansour A, Alkafafy M, Ashour M (2021) Population dynamics, fecundity and fatty acid composition of Oithona nana (Cyclopoida, Copepoda), fed on different diets. Animals (Basel) 11(5):118

    Google Scholar 

  • Maliwat GC, Velasquez S, Robil JL, Chan M, Traifalgar RF, Tayamen M, Ragaza JA (2017) Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquac Res 48(4):1666–1676

    Article  CAS  Google Scholar 

  • Mansour AT, Alprol AE, Abualnaja KM, El-Beltagi HS, Ramadan KMA, Ashour M (2022a) Dried brown seaweed’s phytoremediation potential for methylene blue dye removal from aquatic environments. Polymers 14(7):1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour AT, Ashour M, Alprol AE, Alsaqufi AS (2022b) Aquatic plants and aquatic animals in the context of sustainability: cultivation techniques, integration, and blue revolution. Sustainability 14(6):3257

    Article  CAS  Google Scholar 

  • Matos ÂP, Feller R, Moecke EHS, de Oliveira JV, Junior AF, Derner RB, Sant’Anna, E.S. (2016) Chemical characterization of six microalgae with potential utility for food application. J Am Oil Chem Soc 93:963–972

    Article  CAS  Google Scholar 

  • Medina-Félix D, López-Elías JA, Martínez-Córdova LR, López-Torres MA, Hernández-López J, Rivas-Vega ME, Mendoza-Cano F (2014) Evaluation of the productive and physiological responses of Litopenaeus vannamei infected with WSSV and fed diets enriched with Dunaliella sp. J Invertebr Pathol 117:9–12

    Article  PubMed  Google Scholar 

  • Medina-Reyna CE, Ronson-Paulin JA, Hernandez-Rojas F, Santiago-Morales I, Pedroza-Islas R, Vernon-Carter EJ (2005) Dual benefits of whey protein concentrate in a microencapsulated diet for larval white shrimp, Litopenaeus vannamei. J World Aquacult Soc 36(3):401–410

    Article  Google Scholar 

  • Meitei MM, Singh SK, Mangang YA, Meena DK, Debbarma R, Biswas P, Waikhom G, Patel AB, Ngasotter S, Newmei T (2022) Effective valorization of precision output of algaquaculture towards eco-sustainability and bioeconomy concomitant with biotechnological advances: an innovative concept. Cleaner Waste Syst 3:100026

    Article  Google Scholar 

  • Molino A, Larocca V, Chianese S, Musmarra D (2018) Biofuels production by biomass gasification: a review. Energies 11(4):811

    Article  Google Scholar 

  • Molinoa A, Iovine A, Leonec G, Di Sanzod G, Palazzod S, Martinod M, Sangiorgiod P, Marinob T, Musmarrab D (2020) Microalgae as alternative source of nutraceutical polyunsaturated fatty acids. Chem Eng 79:277–282

    Google Scholar 

  • Muhammad G, Alam MA, Xiong W, Lv Y, Xu J-L (2020) Microalgae biomass production: an overview of dynamic operational methods. In: Microalgae biotechnology for food, health and high value products. Springer, Singapore, pp 415–432

    Chapter  Google Scholar 

  • Musa M, Doshi A, Brown R, Rainey TJ (2019) Microalgae dewatering for biofuels: A comparative techno-economic assessment using single and two-stage technologies. J Clean Prod 229:325–336

    Article  Google Scholar 

  • Musa M, Ward A, Ayoko GA, Rösch C, Brown R, Rainey TJ (2020) Single-step dynamic dewatering of microalgae from dilute suspensions using flocculant assisted filtration. Microb Cell Factories 19:1–18

    Article  Google Scholar 

  • Nagappan S, Kumar G (2021) Investigation of four microalgae in nitrogen deficient synthetic wastewater for biorefinery based biofuel production. Environ Technol Innov 23:101572

    Article  CAS  Google Scholar 

  • Nagappan S, Devendran S, Tsai P-C, Dahms H-U, Ponnusamy VK (2019) Potential of two-stage cultivation in microalgae biofuel production. Fuel 252:339–349

    Article  CAS  Google Scholar 

  • Nagappan S, Das P, AbdulQuadir M, Thaher M, Khan S, Mahata C, Al-Jabri H, Vatland AK, Kumar G (2021) Potential of microalgae as a sustainable feed ingredient for aquaculture. J Biotechnol 341:1–20

    Article  CAS  PubMed  Google Scholar 

  • Namvar F, Mohamed S, Fard SG, Behravan J, Mustapha NM, Alitheen NBM, Othman F (2012) Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem 130(2):376–382

    Article  CAS  Google Scholar 

  • Nandeesha M, Gangadhara B, Manissery J, Venkataraman L (2001) Growth performance of two Indian major carps, catla (Catlacatla) and rohu (Labeorohita) fed diets containing different levels of Spirulina platensis. Bioresour Technol 80(2):117–120

    Article  CAS  PubMed  Google Scholar 

  • Natrah FM, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal–bacterial interactions for aquaculture. Rev Aquac 6(1):48–61

    Article  Google Scholar 

  • Navarro N, Sarasquete C (1998) Use of freeze-dried microalgae for rearing gilthead seabream, Sparus aurata, larvae: I. Growth, histology and water quality. Aquaculture 167(3–4):179–193

    Article  Google Scholar 

  • Navarro N, Yúfera M, García-Gallego M (2001) Use of freeze-dried microalgae for rearing gilthead seabream, Sparus aurata L., larvae. II. Biochemical composition. Hydrobiologia 452(1):69–77

    Article  CAS  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MC, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405(6790):1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, Little DC, Lubchenco J, Shumway SE, Troell M (2021) A 20-year retrospective review of global aquaculture. Nature 591(7851):551–563

    Article  CAS  PubMed  Google Scholar 

  • Neori A (2011) “Green water” microalgae: the leading sector in world aquaculture. J Appl Phycol 23(1):143–149

    Article  Google Scholar 

  • Niccolai A, Zittelli GC, Rodolfi L, Biondi N, Tredici MR (2019) Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res 42:101617

    Article  Google Scholar 

  • Nova P, Martins AP, Teixeira C, Abreu H, Silva JG, Silva AM, Freitas AC, Gomes AM (2020) Foods with microalgae and seaweeds fostering consumers health: A review on scientific and market innovations. J Appl Phycol 32:1789–1802

    Article  Google Scholar 

  • Nunes M, Pereira A, Ferreira JF, Yasumaru F (2009) Evaluation of the microalgae paste viability produced in a mollusk hatchery in Southern Brazil. J World Aquacult Soc 40(1):87–94

    Article  Google Scholar 

  • Olivotto I, Avella MA, Sampaolesi G, Piccinetti C, Ruiz PN, Carnevali O (2008) Breeding and rearing the longsnout seahorse Hippocampus reidi: rearing and feeding studies. Aquaculture 283(1-4):92–96

    Article  Google Scholar 

  • Olvera-Novoa M, Dominguez-Cen L, Olivera-Castillo L, Martínez-Palacios CA (1998) Effect of the use of the microalga Spirulina maxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquac Res 29(10):709–715

    Article  Google Scholar 

  • Oostlander P, van Houcke J, Wijffels RH, Barbosa MJ (2020) Microalgae production cost in aquaculture hatcheries. Aquaculture 525:735310

    Article  Google Scholar 

  • Palmegiano GB, Agradi E, Forneris G, Gai F, Gasco L, Rigamonti E, Sicuro B, Zoccarato I (2005) Spirulina as a nutrient source in diets for growing sturgeon (Acipenser baeri). Aquac Res 36(2):188–195

    Article  Google Scholar 

  • Palmer PJ, Burke MJ, Palmer CJ, Burke JB (2007) Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture 272(1-4):1–21

    Article  Google Scholar 

  • Palmtag MR, Faulk CK, Holt G (2006) Highly unsaturated fatty acid composition of rotifers (Brachionus plicatilis) and Artemia fed various enrichments. J World Aquacult Soc 37(1):126–131

    Article  Google Scholar 

  • Pham NK, Lin J (2013) The effects of different feed enrichments on survivorship and growth of early juvenile longsnout seahorse, Hippocampus reidi. J World Aquacult Soc 44(3):435–446

    Article  Google Scholar 

  • Ponis E, Parisi G, Zittelli GC, Lavista F, Robert R, Tredici M (2008) Pavlova lutheri: Production, preservation and use as food for Crassostrea gigas larvae. Aquaculture 282(1-4):97–103

    Article  CAS  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels—a process view. J Biotechnol 142(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Prabha SP, Nagappan S, Rathna R, Viveka R, Nakkeeran E (2020) Blue biotechnology: a vision for future marine biorefineries. In: Refining biomass residues for sustainable energy and bioproducts. Elsevier, Amsterdam, pp 463–480

    Chapter  Google Scholar 

  • Puello-Cruz A, Mezo-Villalobos S, Gonzalez-Rodriguez B, Voltolina D (2009) Culture of the calanoid copepod Pseudodiaptomus euryhalinus (Johnson 1939) with different microalgal diets. Aquaculture 290(3–4):317–319

    Article  Google Scholar 

  • Raeisossadati M, Moheimani NR, Parlevliet D (2019) Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renew Sust Energ Rev 101:47–59

    Article  Google Scholar 

  • Rafa N, Ahmed SF, Badruddin IA, Mofijur M, Kamangar S (2021) Strategies to produce cost-effective third-generation biofuel from microalgae. Front Energy Res 9:749968

    Article  Google Scholar 

  • Raja R, Coelho A, Hemaiswarya S, Kumar P, Carvalho IS, Alagarsamy A (2018) Applications of microalgal paste and powder as food and feed: an update using text mining tool. Beni-Suef Univ J Basic Appl Sci 7(4):740–747

    Google Scholar 

  • Rajauria G (2015) Seaweeds: a sustainable feed source for livestock and aquaculture. In: Seaweed sustainability. Elsevier, Amsterdam, pp 389–420

    Chapter  Google Scholar 

  • Remize M, Brunel Y, Silva JL, Berthon J-Y, Filaire E (2021) Microalgae n-3 PUFAs production and use in food and feed industries. Marine drugs 19(2):113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Liu W, Dong S, Pearce C (2016) Effects of mono-species and bi-species microalgal diets on the growth, survival and metamorphosis of auricularia larvae of the California sea cucumber, Parastichopus californicus (Stimpson, 1857). Aquac Nutr 22(2):304–314

    Article  Google Scholar 

  • Ribeiro AR, Gonçalves A, Barbeiro M, Bandarra N, Nunes ML, Carvalho ML, Silva J, Navalho J, Dinis MT, Silva T (2017) Phaeodactylum tricornutum in finishing diets for gilthead seabream: effects on skin pigmentation, sensory properties and nutritional value. J Appl Phycol 29(4):1945–1956

    Article  CAS  Google Scholar 

  • Rohani-Ghadikolaei K, Abdolalian E, Hojatollah F, Masoud G, Ng WK (2015) The nutritional effect of Isochrysis galbana and Chaetoceros muelleri cultured with different seaweed extracts on the larval development, growth and survival of the marine shrimp, Penaeus indicus. Aquac Res 46(6):1444–1454

    Article  Google Scholar 

  • Rokey G (1994) Petfood and fishfood extrusion. In: The technology of extrusion cooking. Springer, Boston, pp 144–189

    Chapter  Google Scholar 

  • Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM (2015) A higher level classification of all living organisms. PLoS One 10(4):e0119248

    Article  PubMed  PubMed Central  Google Scholar 

  • Saejung C, Ektasaeng T (2022) Evaluation of Chlorella vulgaris grown in sugar industry wastewater for use as aquaculture feed. Int J Environ Sci Technol 20:5957

    Article  Google Scholar 

  • Samuelsen TA, Oterhals Å, Kousoulaki K (2018) High lipid microalgae (Schizochytrium sp.) inclusion as a sustainable source of n-3 long-chain PUFA in fish feed—Effects on the extrusion process and physical pellet quality. Anim Feed Sci Technol 236:14–28

    Article  CAS  Google Scholar 

  • Santhanam P, Jeyaraj N, Jothiraj K, Ananth S, Kumar SD, Pachiappan P (2019) Assessing the efficacy of marine copepods as an alternative first feed for larval production of tiger shrimp Penaeus monodon. In: Basic and applied zooplankton biology. Springer, Berlin, pp 293–303

    Chapter  Google Scholar 

  • Saravana PS, Ummat V, Bourke P, Tiwari BK (2022) Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review. Crit Rev Biotechnol 43(6):904–919. https://doi.org/10.1080/07388551.2022.2089869

    Article  CAS  PubMed  Google Scholar 

  • Sarker PK, Kapuscinski AR, Bae AY, Donaldson E, Sitek AJ, Fitzgerald DS, Edelson OF (2018) Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One 13(7):e0201315

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarker PK, Kapuscinski AR, McKuin B, Fitzgerald DS, Nash HM, Greenwood C (2020) Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Sci Rep 10(1):19328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagerström E, Christophersen G, Sunde J, Bakke S, Matusse NR, Dupont S, Sundell KS (2021) Controlled spawning and rearing of the sea cucumber, Parastichopus tremulus. J World Aquacult Soc 53(1):224–240

    Article  Google Scholar 

  • Schipp GR, Bosmans JM, Marshall AJ (1999) A method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 174(1-2):81–88

    Article  Google Scholar 

  • Scholtz R, Bolton J, Macey B (2013) Effects of different microalgal feeds and their influence on larval development in the white-spined sea urchin Tripneustes gratilla. Afr J Mar Sci 35(1):25–34

    Article  Google Scholar 

  • Seychelles L, Audet C, Tremblay R, Fournier R, Pernet F (2009) Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aquac Nutr 15(4):431–439

    Article  CAS  Google Scholar 

  • Shaalan M, El-Mahdy M, Saleh M, El-Matbouli M (2018) Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development. Rev Fish Sci Aquac 26(1):99–110

    Article  Google Scholar 

  • Sharawy ZZ, Ashour M, Labena A, Alsaqufi AS, Mansour AT, Abbas EM (2022) Effects of dietary Arthrospira platensis nanoparticles on growth performance, feed utilization, and growth-related gene expression of Pacific white shrimp, Litopenaeus vannamei. Aquaculture 551:737905

    Article  CAS  Google Scholar 

  • Sharma J, Sarmah P, Bishnoi NR (2020) Market perspective of EPA and DHA production from microalgae. In: Nutraceutical fatty acids from oleaginous microalgae: a human health perspective. Scrivener Publishing LLC, Beverly, MA, pp 281–297

    Chapter  Google Scholar 

  • Shera SS, Banik RM (2022) Algal nanoparticles: synthesis and characterization. In: Bioprospecting algae for nanosized materials. Springer, Berlin, pp 25–69

    Google Scholar 

  • Shi C, Dong S, Wang F, Gao Q, Tian X (2013) Effects of four fresh microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture 416:296–301

    Article  Google Scholar 

  • Shi Z, Li X-Q, Chowdhury MK, Chen J-N, Leng X-J (2016) Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture 460:37–44

    Article  CAS  Google Scholar 

  • Shields R, Lupatsch I (2012) 5 Algae for aquaculture and animal feeds. In: Microalgal biotechnology: integration and economy. De Gruyter, Berlin, pp 79–100

    Chapter  Google Scholar 

  • Shigai X, Chuanxin Q, Zhenhua M, Gang Y, Jinhui S, Wanni P, Tao Z, Hongmei M, Wentao Z (2020) Effects of dietary microalgae on growth and survival of larval development of sea urchin (Anthocidaris crassispina). 南方水产科学 16(2):115–120

    Google Scholar 

  • Sibonga RC, Laureta LV, Lebata-Ramos MJH, Nievales MFJ, Pedroso FL (2021) Single and mixed species of microalgae as larval food for the tropical sea cucumber Holothuria scabra. J Appl Phycol 33:3103–3112

    Article  CAS  Google Scholar 

  • Sirakov I, Velichkova K, Nikolov G (2012) The effect of algae meal (Spirulina) on the growth performance and carcass parameters of rainbow trout (Oncorhynchus mykiss). J BioSci Biotech:151–156

    Google Scholar 

  • Sirohi R, Sim SJ, Pandey A (2023) Photobioreactors: an introduction. In: Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 3–10

    Chapter  Google Scholar 

  • Sivakumar N, Sundararaman M, Selvakumar G (2011) Efficacy of micro algae and cyanobacteria as a live feed for juveniles of shrimp Penaeus monodon. Afr J Biotechnol 10(55):11594–11599

    CAS  Google Scholar 

  • Skrede A, Mydland L, Ahlstrøm Ø, Reitan K, Gislerød H, Øverland M (2011) Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci 20(1):131–142

    Article  Google Scholar 

  • Souza FPd, Lima ECSd, Urrea-Rojas AM, Suphoronski SA, Facimoto CT, Bezerra Júnior JdS, Oliveira TESd, Pereira UdP, Santis GWD, Oliveira CALd (2020) Effects of dietary supplementation with a microalga (Schizochytrium sp.) on the hemato-immunological, and intestinal histological parameters and gut microbiota of Nile tilapia in net cages. PLoS One 15(1):e0226977

    Article  PubMed  PubMed Central  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Puerto B, Delgadillo-Díaz M, Sánchez-Solís MJ, Gullian-Klanian M (2021) Analysis of the cost-effectiveness and growth of Nile tilapia (Oreochromis niloticus) in biofloc and green water technologies during two seasons. Aquaculture 538:736534

    Article  Google Scholar 

  • Sui Y, Jiang Y, Moretti M, Vlaeminck SE (2020) Harvesting time and biomass composition affect the economics of microalgae production. J Clean Prod 259:120782

    Article  Google Scholar 

  • Sun X, Chang Y, Ye Y, Ma Z, Liang Y, Li T, Jiang N, Xing W, Luo L (2012) The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture 342:62–68

    Article  Google Scholar 

  • Tanaka Y, Ashaari A, Mohamad FS, Lamit N (2020) Bioremediation potential of tropical seaweeds in aquaculture: Low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture 518:734853

    Article  CAS  Google Scholar 

  • Tendencia EA, dela Peña M (2003) Investigation of some components of the greenwater system which makes it effective in the initial control of luminous bacteria. Aquaculture 218(1-4):115–119

    Article  Google Scholar 

  • Tendencia EA, Bosma RH, Sorio LR (2012) Effect of three innovative culture systems on water quality and whitespot syndrome virus (WSSV) viral load in WSSV-fed Penaeus monodon cultured in indoor tanks. Aquaculture 350:169–174

    Article  Google Scholar 

  • Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  • Turcihan G, Turgay E, Yardımcı RE, Eryalçın KM (2021) The effect of feeding with different microalgae on survival, growth, and fatty acid composition of Artemia franciscana metanauplii and on predominant bacterial species of the rearing water. Aquac Int 29(5):2223–2241

    Article  CAS  Google Scholar 

  • Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65

    Article  Google Scholar 

  • Venkata Subhash G, Chugh N, Iyer S, Waghmare A, Musale AS, Nandru R, Dixit RB, Gaikwad MS, Menon D, Thorat R (2020) Application of in vitro protein solubility for selection of microalgae biomass as protein ingredient in animal and aquafeed. J Appl Phycol 32:3955–3970

    Article  CAS  Google Scholar 

  • Vizcaíno A, López G, Sáez M, Jiménez J, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez T, Cerón-García M, Alarcón F (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431:34–43

    Article  Google Scholar 

  • Vrasna DK, Goh PS, Lau WJ, Ismail AF, Matsuyama H, Gonzales RR (2022) Microalgae dewatering using forward osmosis membrane: a review. Mater Today Proc 65:3073–3080

    Article  CAS  Google Scholar 

  • Walker AB, Berlinsky DL (2011) Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. N Am J Aquac 73(1):76–83

    Article  Google Scholar 

  • Wan AH, Davies SJ, Soler-Vila A, Fitzgerald R, Johnson MP (2019) Macroalgae as a sustainable aquafeed ingredient. Rev Aquac 11(3):458–492

    Article  Google Scholar 

  • Wang Y, Sun M, Tang Y, Xu A, Tang J, Song Z (2022) Effects of Haematococcus pluvialis on the water quality and performance of Litopenaeus vannamei using artificial substrates and water exchange systems. Aquac Int 30(4):1779–1797

    Article  CAS  Google Scholar 

  • Warren-Myers F, Turchini G, Swearer SE, Francis D, Dempster T (2021) The balancing act: Protein, lipid and seaweed dietary levels to maximize gonad quantity in a wild-caught sea urchin. Aquac Nutr 27(4):1019–1030

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy 4(3):287–295

    Article  CAS  Google Scholar 

  • Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37(6):968–974

    Article  Google Scholar 

  • Willadino L, Souza-Santos LP, Mélo RC, Brito AP, Barros NC, Araújo-Castro CM, Galvão DB, Gouveia A, Regis CG, Cavalli RO (2012) Ingestion rate, survival and growth of newly released seahorse Hippocampus reidi fed exclusively on cultured live food items. Aquaculture 360:10–16

    Article  Google Scholar 

  • Yang W, Zheng Z, Lu K, Zheng C, Du Y, Wang J, Zhu J (2020) Manipulating the phytoplankton community has the potential to create a stable bacterioplankton community in a shrimp rearing environment. Aquaculture 520:734789

    Article  CAS  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Yousef EA, Hegab MH (2017) Evaluation of two novel feeding protocols utilizing alive and dried Chlorella vulgaris to grow Heterocypris salina (Ostracoda: Crustacea). J Zoo Res 1(1):10–15

    Google Scholar 

  • Zhang L, Liao W, Huang Y, Wen Y, Chu Y, Zhao C (2022) Global seaweed farming and processing in the past 20 years. Food Prod Process Nutr 4(1):23

    Article  Google Scholar 

  • Zheng Y, Jin R, Zhang X, Wang Q, Wu J (2019) The considerable environmental benefits of seaweed aquaculture in China. Stoch Env Res Risk A 33(4):1203–1221

    Article  Google Scholar 

  • Zhou R, Zhou R, Zhang X, Fang Z, Wang X, Speight R, Wang H, Doherty W, Cullen PJ, Ostrikov K (2019) High-performance plasma-enabled biorefining of microalgae to value-added products. ChemSusChem 12(22):4976–4985

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Elshobary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elshobary, M., Ashour, M. (2024). Algae for Aquaculture: Recent Technological Applications. In: Abomohra, A., Ende, S. (eds) Value-added Products from Algae. Springer, Cham. https://doi.org/10.1007/978-3-031-42026-9_16

Download citation

Publish with us

Policies and ethics