Skip to main content
  • 284 Accesses

Abstract

Sensory perception is a neurophysiological process through which human beings interact with and interpret information from the external environment. This process is mediated through complicated internal psychological mechanisms that cannot be easily duplicated by instruments. In this chapter, we explore the relationships between texture stimulus and the perception of rheological phenomena. We also consider some specific aspects of psychophysics, such as the perception of liquid thickness versus viscosity, as well as perception of grittiness versus particle characteristics. We conclude by recognizing the present limitations of psychophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Refereces

  • Abdouni, A., Moreau, G., Vargiolu, R., & Zahouani, H. (2018). Static and active tactile perception and touch anisotropy: Aging and gender effect. Scientific Reports, 8, 1–11.

    Google Scholar 

  • Akhtar, M., Murray, B. S., & Dickinson, E. (2006). Perception of creaminess of model oil-in-water dairy emulsions: Influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food Hydrocolloids, 20, 839–847.

    Article  CAS  Google Scholar 

  • Algom, D. (2021). The Weber–Fechner law: A misnomer that persists but that should go away. Psychological Review, 128, 757.

    Article  Google Scholar 

  • Andablo-Reyes, E., Bryant, M., Neville, A., Hyde, P., Sarkar, R., Francis, M., & Sarkar, A. (2020). 3D biomimetic tongue-emulating surfaces for tribological applications. ACS Applied Materials & Interfaces, 12, 49371–49385.

    Article  CAS  Google Scholar 

  • Arakawa, N., Saito, N., & Okamoto, S. (2022). Less frictional skin feels softer in a tribologically paradoxical manner. IEEE Access.

    Google Scholar 

  • Arancibia, C., Costell, E., & Bayarri, S. (2013). Impact of structural differences on perceived sweetness in semisolid dairy matrices. Journal of Texture Studies, 44, 346–356.

    Article  Google Scholar 

  • ASTM E1958-20. (2006). Standard guide for sensory claim substantiation. ASTM International.

    Google Scholar 

  • Bartolozzi, C., Indiveri, G., & Donati, E. (2022). Embodied neuromorphic intelligence. Nature Communications, 13, 1024.

    Article  CAS  Google Scholar 

  • Bensmaia, S. (2016). Texture from touch. In Scholarpedia of touch (pp. 207–215). Atlantis Press.

    Chapter  Google Scholar 

  • Bergmann Tiest, W. M., & Kappers, A. M. (2014). Physical aspects of softness perception. Springer.

    Book  Google Scholar 

  • Bikos, D., Samaras, G., Cann, P., Masen, M., Hardalupas, Y., Charalambides, M., Hartmann, C., German, J., & Vieira, J. (2022). Effect of structure on the mechanical and physical properties of chocolate considering time scale phenomena occurring during oral processing. Food Structure, 31, 100244.

    Article  CAS  Google Scholar 

  • Blok, A. E., Bolhuis, D. P., & Stieger, M. (2020). Contributions of viscosity and friction properties to oral and haptic texture perception of iced coffees. Food & Function, 11, 6446–6457.

    Article  CAS  Google Scholar 

  • Blok, A. E., Bolhuis, D. P., Kibbelaar, H. V., Bonn, D., Velikov, K. P., & Stieger, M. (2021). Comparing rheological, tribological and sensory properties of microfibrillated cellulose dispersions and xanthan gum solutions. Food Hydrocolloids, 121, 107052.

    Article  CAS  Google Scholar 

  • Bodegård, A., Geyer, S., Grefkes, C., Zilles, K., & Roland, P. E. (2001). Hierarchical processing of tactile shape in the human brain. Neuron, 31, 317–328.

    Article  Google Scholar 

  • Bogdanov, V., Reinhard, J., Mcglone, F., Haehner, A., Simons, C. T., & Hummel, T. (2021). Oral somatosensory sensitivity in patients with taste disturbance. The Laryngoscope, 131, 2572–2577.

    Article  Google Scholar 

  • Bolenz, S., Meier, J., & Schäpe, R. (2000). Sensorische parameter im Fokus. Zucker Susswarenwirtschaft, 53, 309–314.

    Google Scholar 

  • Bourne, M. (2002). Food texture and viscosity: Concept and measurement. Elsevier.

    Book  Google Scholar 

  • Breen, S. P., Etter, N. M., Ziegler, G. R., & Hayes, J. E. (2019). Oral somatosensatory acuity is related to particle size perception in chocolate. Scientific Reports, 9, 7437.

    Article  Google Scholar 

  • Brockhoff, P. B., De Sousa Amorim, I., Kuznetsova, A., Bech, S., & De Lima, R. R. (2016). Delta-tilde interpretation of standard linear mixed model results. Food Quality and Preference, 49, 129–139.

    Article  Google Scholar 

  • Camacho, S., Dop, M., De Graaf, C., & Stieger, M. (2015). Just noticeable differences and weber fraction of oral thickness perception of model beverages. Journal of Food Science, 80, S1583–S1588.

    Article  CAS  Google Scholar 

  • Carpenter, C. W., Dhong, C., Root, N. B., Rodriquez, D., Abdo, E. E., Skelil, K., Alkhadra, M. A., Ramírez, J., Ramachandran, V. S., & Lipomi, D. J. (2018). Human ability to discriminate surface chemistry by touch. Materials Horizons, 5, 70–77.

    Article  CAS  Google Scholar 

  • Case, L. K., Laubacher, C. M., Olausson, H., Wang, B., Spagnolo, P. A., & Bushnell, M. C. (2016). Encoding of touch intensity but not pleasantness in human primary somatosensory cortex. Journal of Neuroscience, 36, 5850–5860.

    Article  CAS  Google Scholar 

  • Cattaneo, C., Liu, J., Bech, A. C., Pagliarini, E., & Bredie, W. L. (2020). Csross-cultural differences in lingual tactile acuity, taste sensitivity phenotypical markers, and preferred oral processing behaviors. Food Quality and Preference, 80, 103803.

    Article  Google Scholar 

  • Cavdan, M., Doerschner, K., & Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics, 14, 603–614.

    Article  Google Scholar 

  • Cazzolla, A., Lovero, R., Brescia, V., Contini, R., Santacroce, L., Di Cosola, M., Dioguardi, M., Crincoli, V., Pepe, M., & Ciavarella, D. (2022). Alteration of the perception of cold, heat and texture of food in association with taste dysfunction in COVID-19. Journal of Biological Regulators and Homeostatic Agents, 36, 281–293.

    CAS  Google Scholar 

  • Chen, J. (2014). Food oral processing: Some important underpinning principles of eating and sensory perception. Food Structure, 1, 91–105.

    Article  Google Scholar 

  • Chen, J. (2020). It is important to differentiate sensory property from the material property. Trends in Food Science & Technology, 96, 268–270.

    Article  CAS  Google Scholar 

  • Chen, J., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science & Technology, 25, 4–12.

    Article  CAS  Google Scholar 

  • Chen, J., Tian, S., Wang, X., Mao, Y., & Zhao, L. (2021). The Stevens law and the derivation of sensory perception. Journal of Future Foods, 1, 82–87.

    Article  Google Scholar 

  • Chen, S., Li, K., Qiao, X., Ru, W., & Xu, L. (2023). Tactile perception of fractal surfaces: an EEG-fNIRS study. Tribology International, 108266.

    Google Scholar 

  • Chojnicka-Paszun, A., De Jongh, H., & De Kruif, C. (2012). Sensory perception and lubrication properties of milk: Influence of fat content. International Dairy Journal, 26, 15–22.

    Article  Google Scholar 

  • Colbert, S. E., Triplett, C. S., & Maier, J. X. (2022). The role of viscosity in flavor preference: Plasticity and interactions with taste. Chemical Senses, 47, bjac018.

    Article  Google Scholar 

  • Colijn, I., Ash, A., Dufauret, M., Loussert-Fonta, C., Leser, M. E., Wilde, P. J., & Wooster, T. J. (2022). Colloidal dynamics of emulsion droplets in mouth. Journal of Colloid and Interface Science, 620, 153–167.

    Article  CAS  Google Scholar 

  • Connor, C. E., & Johnson, K. O. (1992). Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. Journal of Neuroscience, 12, 3414–3426.

    Article  CAS  Google Scholar 

  • Conroy, P. M., O’sullivan, M. G., Hamill, R. M., & Kerry, J. P. (2017). Sensory capability of young, middle-aged and elderly Irish assessors to identify beef steaks of varying texture. Meat Science, 132, 125–130.

    Article  Google Scholar 

  • Cook, D. J., Linforth, R. S., & Taylor, A. J. (2003). Effects of hydrocolloid thickeners on the perception of savory flavors. Journal of Agricultural and Food Chemistry, 51, 3067–3072.

    Article  CAS  Google Scholar 

  • Cutler, A. N., Morris, E. R., & Taylor, L. J. (1983). Oral Perception of Viscosity in Fluid Foods and Model Systems. Journal of Texture Studies, 14, 377–395.

    Article  Google Scholar 

  • De Araujo, I. E., & Rolls, E. T. (2004). Representation in the human brain of food texture and oral fat. Journal of Neuroscience, 24, 3086–3093.

    Article  Google Scholar 

  • De Wijk, R. A., & Prinz, J. F. (2005). The role of friction in perceived oral texture. Food Quality and Preference, 16, 121–129.

    Article  Google Scholar 

  • Deblais, A., Hollander, E. D., Boucon, C., Blok, A. E., Veltkamp, B., Voudouris, P., Versluis, P., Kim, H.-J., Mellema, M., & Stieger, M. (2021). Predicting thickness perception of liquid food products from their non-Newtonian rheology. Nature Communications, 12, 1–7.

    Article  Google Scholar 

  • Do, T. A., Hargreaves, J., Wolf, B., Hort, J., & Mitchell, J. (2007). Impact of particle size distribution on rheological and textural properties of chocolate models with reduced fat content. Journal of Food Science, 72, E541–E552.

    Article  CAS  Google Scholar 

  • Donini, L. M., Savina, C., & Cannella, C. (2003). Eating habits and appetite control in the elderly: The anorexia of aging. International Psychogeriatrics, 15, 73–87.

    Article  Google Scholar 

  • Engelen, L. (2018). Oral processing: Implications for consumer choice and preferences. In Methods in consumer research, Volume 1. Elsevier.

    Google Scholar 

  • Feron, G., & Poette, J. (2013). In-mouth mechanism leading to the perception of fat in humans: From detection to preferences. The particular role of saliva. Oléagineux, Corps Gras, Lipides, 20, 102–107.

    Article  Google Scholar 

  • Fiszman, S., & Damasio, M. (2000). Instrumental measurement of adhesiveness in solid and semi-solid foods. A survey. Journal of Texture Studies, 31, 69–91.

    Article  Google Scholar 

  • Forde, C. G., & Bolhuis, D. (2022). Interrelations between food form, texture, and matrix influence energy intake and metabolic responses. Current Nutrition Reports, 11, 1–9.

    Article  Google Scholar 

  • Foster, K. D., Grigor, J. M., Cheong, J. N., Yoo, M. J., Bronlund, J. E., & Morgenstern, M. P. (2011). The role of oral processing in dynamic sensory perception. Journal of Food Science, 76, R49–R61.

    Article  CAS  Google Scholar 

  • Friedman, R. M., Hester, K. D., Green, B. G., & Lamotte, R. H. (2008). Magnitude estimation of softness. Experimental Brain Research, 191, 133–142.

    Article  Google Scholar 

  • Fuhrmann, P., Sala, G., Stieger, M., & Scholten, E. (2020). Effect of oil droplet inhomogeneity at different length scales on mechanical and sensory properties of emulsion-filled gels: Length scale matters. Food Hydrocolloids, 101, 105462.

    Article  CAS  Google Scholar 

  • Furukawa, N., Ito, Y., Tanaka, Y., Ito, W., & Hattori, Y. (2019). Preliminary exploration for evaluating acuity of oral texture perception. Journal of Texture Studies, 50, 217–223.

    Article  Google Scholar 

  • Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. OUP Oxford.

    Book  Google Scholar 

  • Gao, J., Xu, J., Guo, X., Deng, Y., & Feng, J. (2023). Local image descriptor developed from Fechner’s law. Journal of Electronic Imaging, 32, 013037.

    Article  Google Scholar 

  • Gomez-Ramirez, M., Hysaj, K., & Niebur, E. (2016). Neural mechanisms of selective attention in the somatosensory system. Journal of Neurophysiology, 116, 1218–1231.

    Article  Google Scholar 

  • Grabenhorst, F., & Rolls, E. T. (2014). The representation of oral fat texture in the human somatosensory cortex. Human Brain Mapping, 35, 2521–2530.

    Article  Google Scholar 

  • Grabenhorst, F., Rolls, E. T., Parris, B. A., & D’Souza, A. A. (2010). How the brain represents the reward value of fat in the mouth. Cerebral Cortex, 20, 1082–1091.

    Article  Google Scholar 

  • Guinard, J.-X., & Mazzucchelli, R. (1996). The sensory perception of texture and mouthfeel. Trends in Food Science & Technology, 7, 213–219.

    Article  CAS  Google Scholar 

  • Guinard, J. X., & Mazzucchelli, R. (1999). Effects of sugar and fat on the sensory properties of milk chocolate: Descriptive analysis and instrumental measurements. Journal of the Science of Food and Agriculture, 79, 1331–1339.

    Article  CAS  Google Scholar 

  • Gunasekaran, S., & Ak, M. M. (2000). Dynamic oscillatory shear testing of foods—Selected applications. Trends in Food Science & Technology, 11, 115–127.

    Article  CAS  Google Scholar 

  • Hadde, E. K., Cichero, J. A. Y., Zhao, S., Chen, W., & Chen, J. (2019). The importance of extensional rheology in bolus control during swallowing. Scientific Reports, 9, 1–10.

    Article  CAS  Google Scholar 

  • Haedelt, J., Beckett, S., & Niranjan, K. (2007). Bubble-included chocolate: Relating structure with sensory response. Journal of Food Science, 72, E138–E142.

    Article  CAS  Google Scholar 

  • Hanson, B., Jamshidi, R., Redfearn, A., Begley, R., & Steele, C. M. (2019). Experimental and computational investigation of the IDDSI flow test of liquids used in dysphagia management. Annals of Biomedical Engineering, 47, 2296–2307.

    Article  Google Scholar 

  • He, Q., Hort, J., & Wolf, B. (2016). Predicting sensory perceptions of thickened solutions based on rheological analysis. Food Hydrocolloids, 61, 221e232.

    Article  Google Scholar 

  • Henderson, J., Mari, T., Hopkinson, A., Byrne, A., Hewitt, D., Newton-Fenner, A., Giesbrecht, T., Marshall, A., Stancak, A., & Fallon, N. (2022). Neural correlates of texture perception during active touch. Behavioural Brain Research, 429, 113908.

    Article  Google Scholar 

  • Howes, P. D., Wongsriruksa, S., Laughlin, Z., Witchel, H. J., & Miodownik, M. (2014). The perception of materials through oral sensation. PLoS One, 9, e105035.

    Article  Google Scholar 

  • Hu, J., Andablo-Reyes, E., Soltanahmadi, S., & Sarkar, A. (2020). Synergistic microgel-reinforced hydrogels as high-performance lubricants. ACS Macro Letters, 9, 1726–1731.

    Article  CAS  Google Scholar 

  • Huang, F.-Y., Sutcliffe, M. P., & Grabenhorst, F. (2021). Preferences for nutrients and sensory food qualities identify biological sources of economic values in monkeys. Proceedings of the National Academy of Sciences, 118, e2101954118.

    Article  CAS  Google Scholar 

  • Ibañez, F. C., Gómez, I., Merino, G., & Beriain, M. J. (2019). Textural characteristics of safe dishes for dysphagic patients: A multivariate analysis approach. International Journal of Food Properties, 22, 593–606.

    Article  Google Scholar 

  • Janani, R., Tan, V. W. K., Goh, A. T., Choy, M. J. Y., Lim, A. J., Teo, P. S., Stieger, M., & Forde, C. G. (2022). Independent and combined impact of texture manipulation on oral processing behaviours among faster and slower eaters. Food & Function, 13, 9340–9354.

    Article  CAS  Google Scholar 

  • Johnson, K. O., Hsiao, S. S., & Yoshioka, T. (2002). Neural coding and the basic law of psychophysics. The Neuroscientist, 8, 111–121.

    Article  Google Scholar 

  • Kadohisa, M., Rolls, E. T., & Verhagen, J. V. (2005). Neuronal representations of stimuli in the mouth: The primate insular taste cortex, orbitofrontal cortex and amygdala. Chemical Senses, 30, 401–419.

    Article  Google Scholar 

  • Ketel, E. C., De Wijk, R. A., De Graaf, C., & Stieger, M. (2022). Effect of cross-cultural differences on thickness, firmness and sweetness sensitivity. Food Research International, 152, 109890.

    Article  CAS  Google Scholar 

  • Kim, J., Yeon, J., Ryu, J., Park, J.-Y., Chung, S.-C., & Kim, S.-P. (2017). Neural activity patterns in the human brain reflect tactile stickiness perception. Frontiers in Human Neuroscience, 11, 445.

    Article  Google Scholar 

  • Kim, J., Bülthoff, I., & Bülthoff, H. H. (2020). Cortical representation of tactile stickiness evoked by skin contact and glove contact. Frontiers in Integrative Neuroscience, 14, 19.

    Article  Google Scholar 

  • Klatzky, R. L., & Lederman, S. J. (2010). Multisensory texture perception. In Multisensory object perception in the primate brain. Springer.

    Google Scholar 

  • Koç, H., Vinyard, C., Essick, G., & Foegeding, E. (2013). Food oral processing: Conversion of food structure to textural perception. Annual Review of Food Science and Technology, 4, 237–266.

    Article  Google Scholar 

  • Kokini, J., & Cussler, E. (1987). The psychophysics of fluid food texture. Food texture-instrumental and sensory measurement. Marcel Dekker.

    Google Scholar 

  • Komiyama, O., Kawara, M., & De Laat, A. (2007). Ethnic differences regarding tactile and pain thresholds in the trigeminal region. The Journal of Pain, 8, 363–369.

    Article  Google Scholar 

  • Kongjaroen, A., Methacanon, P., Seetapan, N., Fuongfuchat, A. Gamonpilas C., & Nishinari, K. (2022). Effects of dispersing media on the shear and extensional rheology of xanthan gum and guar gum-based thickeners used for dysphagia management. Food Hydrocolloids, 107857

    Google Scholar 

  • Kremer, S., Bult, J. H., Mojet, J., & Kroeze, J. H. (2007). Food perception with age and its relationship to pleasantness. Chemical Senses, 32, 591–602.

    Article  Google Scholar 

  • Laguna, L., Farrell, G., Bryant, M., Morina, A., & Sarkar, A. (2017). Relating rheology and tribology of commercial dairy colloids to sensory perception. Food & Function, 8, 563–573.

    Article  CAS  Google Scholar 

  • Lamp, G., Goodin, P., Palmer, S., Low, E., Barutchu, A., & Carey, L. M. (2019). Activation of bilateral secondary somatosensory cortex with right hand touch stimulation: A meta-analysis of functional neuroimaging studies. Frontiers in Neurology, 9, 1129.

    Article  Google Scholar 

  • Lavoisier, A., Avila-Sierra, A., Timpe, C., Kuehl, P., Wagner, L., Tournier, C., & Ramaioli, M. (2022). A novel soft robotic pediatric in vitro swallowing device to gain insights into the swallowability of mini-tablets. International Journal of Pharmaceutics, 629, 122369.

    Article  Google Scholar 

  • Lawless, H. T., & Heymann, H. (2010). Sensory evaluation of food: Principles and practices. Springer.

    Book  Google Scholar 

  • Le Berre, E., Béno, N., Ishii, A., Chabanet, C., Etievant, P., & Thomas-Danguin, T. (2008). Just noticeable differences in component concentrations modify the odor quality of a blending mixture. Chemical Senses, 33, 389–395.

    Article  Google Scholar 

  • Lee, Y., Jee Bin, Y., Kang, D., Yi, H., & Saakes, D. (2019). Designing internal structure of chocolate and its effect on food texture. In Companion publication of the 2019 on designing interactive systems conference 2019 companion (pp. 231–235).

    Google Scholar 

  • Li, Z., & Kleinstreuer, C. (2007). A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid–structure interaction analysis. European Journal of Mechanics - B/Fluids, 26, 615–631.

    Article  Google Scholar 

  • Lie-Piang, A., Braconi, N., Boom, R. M., & Van Der Padt, A. (2021). Less refined ingredients have lower environmental impact–a life cycle assessment of protein-rich ingredients from oil-and starch-bearing crops. Journal of Cleaner Production, 292, 126046.

    Article  CAS  Google Scholar 

  • Lie-Piang, A., Garre, A., Nissink, T., Van Beek, N., Van Der Padt, A., & Boom, R. (2022a). Machine learning to quantify techno-functional properties-a case study for gel stiffness with pea ingredients. Innovative Food Science & Emerging Technologies, 103242.

    Google Scholar 

  • Lie-Piang, A., Möller, A. C., Köllmann, N., Garre, A., Boom, R., & Van Der Padt, A. (2022b). Functionality-driven food product formulation–An illustration on selecting sustainable ingredients building viscosity. Food Research International, 152, 110889.

    Article  CAS  Google Scholar 

  • Linander, C. B., Christensen, R. H. B., Cleaver, G., & Brockhoff, P. B. (2019). Individual differences in replicated multi-product experiments with Thurstonian mixed models for binary paired comparison data. Food Quality and Preference, 75, 220–229.

    Article  Google Scholar 

  • Liu, J., Cattaneo, C., Papavasileiou, M., Methven, L., & Bredie, W. L. (2022). A review on oral tactile acuity: Measurement, influencing factors and its relation to food perception and preference. Food Quality and Preference, 104624.

    Google Scholar 

  • Long, K. H., Lieber, J. D., & Bensmaia, S. J. (2022). Texture is encoded in precise temporal spiking patterns in primate somatosensory cortex. Nature Communications, 13, 1–12.

    Article  Google Scholar 

  • Lv, Z., Chen, J., & Holmes, M. (2017). Human capability in the perception of extensional and shear viscosity. Journal of Texture Studies, 48, 463–469.

    Article  Google Scholar 

  • Lv, C., Lou, L., Mosca, A. C., Wang, X., Yang, N., & Chen, J. (2020). Effect of tongue temperature on oral tactile sensitivity and viscosity discrimination. Food Hydrocolloids, 102, 105578.

    Article  CAS  Google Scholar 

  • Ma, T., & Chen, J. (2023). Capacity of oral emulsification determines the threshold of greasiness sensation. Food Hydrocolloids, 137, 108378.

    Article  CAS  Google Scholar 

  • Makame, J., De Kock, H., & Emmambux, N. M. (2020). Nutrient density of common African indigenous/local complementary porridge samples. LWT, 133, 109978.

    Article  CAS  Google Scholar 

  • Mantilla, S. M. O., Shewan, H. M., Shingleton, R., Stokes, J. R., & Smyth, H. E. (2020). Ability to detect and identify the presence of particles influences consumer acceptance of yoghurt. Food Quality and Preference, 85, 103979.

    Article  Google Scholar 

  • Mantilla, S. M. O., Shewan, H. M., Shingleton, R., Hort, J., Stokes, J. R., & Smyth, H. E. (2022). Oral physiology, sensory acuity, product experience and personality traits impact consumers’ ability to detect particles in yoghurt. Food Quality and Preference, 96, 104391.

    Article  Google Scholar 

  • Marschallek, B. E., Löw, A., & Jacobsen, T. (2023). You can touch this! Brain correlates of aesthetic processing of active fingertip exploration of material surfaces. Neuropsychologia, 182, 108520.

    Article  Google Scholar 

  • Mcbride, R. L. (1983). A JND-scale/category-scale convergence in taste. Perception & Psychophysics, 34, 77–83.

    Article  CAS  Google Scholar 

  • Mcglone, F., Olausson, H., Boyle, J. A., Jones-Gotman, M., Dancer, C., Guest, S., & Essick, G. (2012). Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. European Journal of Neuroscience, 35, 1782–1788.

    Article  CAS  Google Scholar 

  • Mcglone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: Sensing and feeling. Neuron, 82, 737–755.

    Article  CAS  Google Scholar 

  • Mertens, A., Mertens, U. K., & Lerche, V. (2021). On the difficulty to think in ratios: A methodological bias in Stevens’ magnitude estimation procedure. Attention, Perception, & Psychophysics, 83, 2347–2365.

    Article  Google Scholar 

  • Messaoud, W. B., Bueno, M.-A., & Lemaire-Semail, B. (2016). Relation between human perceived friction and finger friction characteristics. Tribology International, 98, 261–269.

    Article  Google Scholar 

  • Metzner, A. (1985). Rheology of suspensions in polymeric liquids. Journal of Rheology, 29, 739–775.

    Article  CAS  Google Scholar 

  • Miles, B. L., Wu, Z., Kennedy, K. S., Zhao, K., & Simons, C. T. (2022). Elucidation of a lingual detection mechanism for high-viscosity solutions in humans. Food & Function, 13, 64–75.

    Article  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  CAS  Google Scholar 

  • Mills, T., Koay, A., & Norton, I. T. (2013). Fluid gel lubrication as a function of solvent quality. Food Hydrocolloids, 32, 172–177.

    Article  CAS  Google Scholar 

  • Miodownik, M. A. (2007). Toward designing new sensoaesthetic materials. Pure and Applied Chemistry, 79, 1635–1641.

    Article  CAS  Google Scholar 

  • Morell, P., Chen, J., & Fiszman, S. (2017). The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food & Function, 8, 545–553.

    Article  CAS  Google Scholar 

  • Morley, J. E. (2001). Decreased food intake with aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56, 81–88.

    Article  Google Scholar 

  • Moskowitz, H. R. (2020). Commercial product design: Psychophysics, systematics, and emerging opportunities. In Handbook of eating and drinking: Interdisciplinary perspectives (pp. 1577–1597). Springer.

    Chapter  Google Scholar 

  • Nadal, M. (2013). The experience of art: Insights from neuroimaging. Progress in Brain Research, 204, 135–158.

    Article  Google Scholar 

  • Nagata, S., Kim, S.-H., Mizushima, Y., & Norii, T. (2018). Airway obstruction due to sticky rice cake (mochi): A case series and review of the literature. International Journal of Emergency Medicine, 11, 1–4.

    Article  Google Scholar 

  • Nishinari, K. (2004). Rheology, food texture and mastication. Journal of Texture Studies, 35, 113–124.

    Article  Google Scholar 

  • Nishinari, K., Hayakawa, F., Xia, C. F., Huang, L., Meullenet, J. F., & Sieffermann, J. M. (2008). Comparative study of texture terms: English, French, Japanese and Chinese. Journal of Texture Studies, 39, 530–568.

    Article  Google Scholar 

  • Niu, M., & Lo, C.-H. (2022). Do we see rendered surface materials differently in virtual reality? A psychophysics-based investigation. Virtual Reality, 26, 1–15.

    Article  CAS  Google Scholar 

  • Olausson, H., Cole, J., Rylander, K., Mcglone, F., Lamarre, Y., Wallin, B. G., Krämer, H., Wessberg, J., Elam, M., & Bushnell, M. C. (2008). Functional role of unmyelinated tactile afferents in human hairy skin: Sympathetic response and perceptual localization. Experimental Brain Research, 184, 135–140.

    Article  Google Scholar 

  • Ong, J. J.-X., Steele, C. M., & Duizer, L. M. (2018). Sensory characteristics of liquids thickened with commercial thickeners to levels specified in the International Dysphagia Diet Standardization Initiative (IDDSI) framework. Food Hydrocolloids, 79, 208–217.

    Article  CAS  Google Scholar 

  • Paul, V., Tripathi, A. D., Agarwal, A., Kumar, P., & Rai, D. C. (2022). Tribology–Novel oral processing tool for sensory evaluation of food. LWT, 160, 113270.

    Article  CAS  Google Scholar 

  • Pellegrino, R., Jones, J. D., Shupe, G. E., & Luckett, C. R. (2019). Sensitivity to viscosity changes and subsequent estimates of satiety across different senses. Appetite, 133, 101–106.

    Article  Google Scholar 

  • Pellegrino, R., Mcnelly, C., & Luckett, C. (2021). Subjective touch sensitivity leads to behavioral shifts in oral food texture sensitivity and awareness. Scientific Reports, 11, 1–9.

    Article  Google Scholar 

  • Peng, Y., Serfass, C. M., Kawazoe, A., Shao, Y., Gutierrez, K., Hill, C. N., Santos, V. J., Visell, Y., & Hsiao, L. C. (2021). Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nature Materials, 20, 1707–1711.

    Article  CAS  Google Scholar 

  • Perini, I., Olausson, H., & Morrison, I. (2015). Seeking pleasant touch: Neural correlates of behavioral preferences for skin stroking. Frontiers in Behavioral Neuroscience, 9, 8.

    Article  Google Scholar 

  • Peyronel, F., & Pink, D. A. (2021). Using USAXS to predict the under-tempered chocolate microstructure. Food Research International, 143, 110224.

    Article  CAS  Google Scholar 

  • Post, R. A., Blijlevens, J., Hekkert, P., Saakes, D., & Arango, L. (2023). Why we like to touch: Consumers’ tactile esthetic appreciation explained by a balanced combination of unity and variety in product designs. Psychology & Marketing, 40, 1249.

    Article  Google Scholar 

  • Preuschhof, C., Heekeren, H. R., Taskin, B., Schubert, T., & Villringer, A. (2006). Neural correlates of vibrotactile working memory in the human brain. Journal of Neuroscience, 26, 13231–13239.

    Article  CAS  Google Scholar 

  • Puleo, S., Masi, P., Cavella, S., & Di Monaco, R. (2021a). Oral sensitivity to flowability and food neophobia drive food preferences and choice. Food, 10, 1024.

    Article  Google Scholar 

  • Puleo, S., Valentino, M., Masi, P., & Di Monaco, R. (2021b). Hardness sensitivity: Are old, young, female and male subjects all equally sensitive? Food Quality and Preference, 90, 104118.

    Article  Google Scholar 

  • Rauh, C., Singh, J., Nagel, M., & Delgado, A. (2012). Objective analysis and prediction of texture perception of yoghurt by hybrid neuro-numerical methods. International Dairy Journal, 26, 2–14.

    Article  Google Scholar 

  • Renard, D., Van De Velde, F., & Visschers, R. W. (2006). The gap between food gel structure, texture and perception. Food Hydrocolloids, 20, 423–431.

    Article  CAS  Google Scholar 

  • Riantiningtyas, R., Giboreau, A., Bruyas, A., Dougkas, A., Kwiecien, C., Carrouel, F., Pouyet, V., & Bredie, W. L. (2022). Oral-somatosensory alterations in head & neck cancer patients and food intake. Current Developments in Nutrition, 6, 252–252.

    Article  Google Scholar 

  • Rohm, H. A., & Raaber, S. U. (1992). Difference thresholds in texture evaluation of edible fats: Firmness and spreadability. Journal of Food Science, 57, 647–650.

    Article  Google Scholar 

  • Roininen, K., Fillion, L., Kilcast, D., & Lähteenmäki, L. (2003). Perceived eating difficulties and preferences for various textures of raw and cooked carrots in young and elderly subjects. Journal of Sensory Studies, 18, 437–451.

    Article  Google Scholar 

  • Rolls, E. T. (2020). The texture and taste of food in the brain. Journal of Texture Studies, 51, 23–44.

    Article  Google Scholar 

  • Rolls, E. T. (2021). The orbitofrontal cortex, food reward, body weight and obesity. Social Cognitive and Affective Neuroscience.

    Google Scholar 

  • Rolls, E. T., Mills, T., Norton, A. B., Lazidis, A., & Norton, I. T. (2018). The neuronal encoding of oral fat by the coefficient of sliding friction in the cerebral cortex and amygdala. Cerebral Cortex, 28, 4080–4089.

    Article  Google Scholar 

  • Rosenthal, A. J. (1999). Relation between instrumental and sensory measures of food texture. In Food texture: Measurement and perception (pp. 1–17). Routledge.

    Google Scholar 

  • Rovers, T. A., Sala, G., Van Der Linden, E., & Meinders, M. B. (2016). Potential of microbubbles as fat replacer: Effect on rheological, tribological and sensorial properties of model food systems. Journal of Texture Studies, 47, 220–230.

    Article  Google Scholar 

  • Santagiuliana, M., Marigómez, I. S., Broers, L., Hayes, J. E., Piqueras-Fiszman, B., Scholten, E., & Stieger, M. (2019). Exploring variability in detection thresholds of microparticles through participant characteristics. Food & Function, 10, 5386–5397.

    Article  CAS  Google Scholar 

  • Santagiuliana, M., Broers, L., Marigómez, I. S., Stieger, M., Piqueras-Fiszman, B., & Scholten, E. (2020). Strategies to compensate for undesired gritty sensations in foods. Food Quality and Preference, 81, 103842.

    Article  Google Scholar 

  • Schädle, C. N., Bader-Mittermaier, S., & Sanahuja, S. (2022). Characterization of reduced-fat mayonnaise and comparison of sensory perception, rheological, tribological, and textural analyses. Food, 11, 806.

    Article  Google Scholar 

  • Schifferstein, H. N., Kudrowitz, B. M., & Breuer, C. (2020). Food perception and aesthetics-linking sensory science to culinary practice. Journal of Culinary Science & Technology, 1–43.

    Google Scholar 

  • Schiffman, S. S. (1993). Perception of taste and smell in elderly persons. Critical Reviews in Food Science and Nutrition, 33, 17–26.

    Article  CAS  Google Scholar 

  • Schimmel, M., Voegeli, G., Duvernay, E., Leemann, B., & Müller, F. (2017). Oral tactile sensitivity and masticatory performance are impaired in stroke patients. Journal of Oral Rehabilitation, 44, 163–171.

    Article  CAS  Google Scholar 

  • Schuman, C. D., Kulkarni, S. R., Parsa, M., Mitchell, J. P., Date, P., & Kay, B. (2022). Opportunities for neuromorphic computing algorithms and applications. Nature Computational Science, 2, 10–19.

    Article  Google Scholar 

  • Servais, C., Jones, R., & Roberts, I. (2002). The influence of particle size distribution on the processing of food. Journal of Food Engineering, 51, 201–208.

    Article  Google Scholar 

  • Sherman, P. (1969). A texture profile of foodstuffs based upon well-defined rheological properties. Journal of Food Science, 34, 458–462.

    Article  Google Scholar 

  • Shibata, A., Ikegami, A., Nakauma, M., & Higashimori, M. (2017). Convolutional neural network based estimation of gel-like food texture by a robotic sensing system. Robotics, 6, 37.

    Article  Google Scholar 

  • Singham, P., Birwal, P., & Yadav, B. (2015). Importance of objective and subjective measurement of food quality and their inter-relationship. Journal of Food Processing & Technology, 6, 1.

    Google Scholar 

  • Skedung, L., El Rawadi, C., Arvidsson, M., Farcet, C., Luengo, G. S., Breton, L., & Rutland, M. W. (2018). Mechanisms of tactile sensory deterioration amongst the elderly. Scientific Reports, 8, 1–10.

    Article  CAS  Google Scholar 

  • Smith, C. H., Logemann, J. A., Burghardt, W. R., Zecker, S. G., & Rademaker, A. W. (2006). Oral and oropharyngeal perceptions of fluid viscosity across the age span. Dysphagia, 21, 209–217.

    Article  Google Scholar 

  • Snyder, D. J., Prescott, J., & Bartoshuk, L. M. (2006). Modern psychophysics and the assessment of human oral sensation. Taste and Smell, 63, 221–241.

    Article  Google Scholar 

  • Soltanahmadi, S., Bryant, M., & Sarkar, A. (2023). Insights into the multiscale lubrication mechanism of edible phase change materials. ACS Applied Materials & Interfaces, 15, 3699–3712.

    Article  CAS  Google Scholar 

  • Souto, A., Zhang, J., Aragón, A. M., Velikov, K. P., & Coulais, C. (2022). Edible mechanical metamaterials with designed fracture for mouthfeel control. Soft Matter, 18, 2910–2919.

    Article  CAS  Google Scholar 

  • Spence, C., & Gallace, A. (2011). Multisensory design: Reaching out to touch the consumer. Psychology & Marketing, 28, 267–308.

    Article  Google Scholar 

  • Spitzer, B., Wacker, E., & Blankenburg, F. (2010). Oscillatory correlates of vibrotactile frequency processing in human working memory. Journal of Neuroscience, 30, 4496–4502.

    Article  CAS  Google Scholar 

  • Srivastava, R., Mantelet, M., Saint-Eve, A., Gennisson, J.-L., Restagno, F., Souchon, I., & Mathieu, V. (2021). Ultrasound monitoring of a deformable tongue-food gel system during uniaxial compression–An in vitro study. Innovative Food Science & Emerging Technologies, 70, 102695.

    Article  CAS  Google Scholar 

  • Steele, C. M., James, D. F., Hori, S., Polacco, R. C., & Yee, C. (2014). Oral perceptual discrimination of viscosity differences for non-newtonian liquids in the nectar-and honey-thick ranges. Dysphagia, 29, 355–364.

    Article  Google Scholar 

  • Stevens, S. S. (1961). To Honor Fechner and repeal his law: A power function, not a log function, describes the operating characteristic of a sensory system. Science, 133, 80–86.

    Article  CAS  Google Scholar 

  • Stevens, S., & Guirao, M. (1964). Scaling of apparent viscosity. Science, 144, 1157–1158.

    Article  CAS  Google Scholar 

  • Strassburg, J., Burbidge, A., & Hartmann, C. (2009). Identification of tactile mechanisms for the evaluation of object sizes during texture perception. Food Quality and Preference, 20, 329–334.

    Article  Google Scholar 

  • Tao, K., Yu, W., Prakash, S., & Gilbert, R. G. (2020). Investigating cooked rice textural properties by instrumental measurements. Food Science and Human Wellness, 9, 130–135.

    Article  Google Scholar 

  • Theocharidou, A., Ahmad, M., Petridis, D., Vasiliadou, C., Chen, J., & Ritzoulis, C. (2021). Sensory perception of guar gum-induced thickening: Correlations with rheological analysis. Food Hydrocolloids, 111, 106246.

    Article  CAS  Google Scholar 

  • Thomazo, J.-B., Contreras Pastenes, J., Pipe, C. J., Le Révérend, B., Wandersman, E., & Prevost, A. M. (2019). Probing in-mouth texture perception with a biomimetic tongue. Journal of the Royal Society Interface, 16, 20190362.

    Article  CAS  Google Scholar 

  • Tobin, A. B., Mihnea, M., Hildenbrand, M., Miljkovic, A., Garrido-Bañuelos, G., Xanthakis, E., & Lopez-Sanchez, P. (2020). Bolus rheology and ease of swallowing of particulated semi-solid foods as evaluated by an elderly panel. Food & Function, 11, 8648–8658.

    Article  Google Scholar 

  • Tomlinson, S., Lewis, R., Liu, X., Texier, C., & Carré, M. (2011). Understanding the friction mechanisms between the human finger and flat contacting surfaces in moist conditions. Tribology Letters, 41, 283–294.

    Article  CAS  Google Scholar 

  • Tunick, M. H., Onwulata, C. I., Thomas, A. E., Phillips, J. G., Mukhopadhyay, S., Sheen, S., Liu, C.-K., Latona, N., Pimentel, M. R., & Cooke, P. H. (2013). Critical evaluation of crispy and crunchy textures: A review. International Journal of Food Properties, 16, 949–963.

    Article  Google Scholar 

  • Upadhyay, R., Aktar, T., & Chen, J. (2020). Perception of creaminess in foods. Journal of Texture Studies, 51, 375–388.

    Article  Google Scholar 

  • Varela, P., Mosca, A. C., Nguyen, Q. C., Mcewan, J. A., & Berget, I. (2021). Individual differences underlying food intake and liking in semisolid foods. Food Quality and Preference, 87, 104023.

    Article  Google Scholar 

  • Vieira, J., Oliveira, F., Jr., Salvaro, D., Maffezzolli, G., De Mello, J. B., Vicente, A., & Cunha, R. (2020). Rheology and soft tribology of thickened dispersions aiming the development of oropharyngeal dysphagia-oriented products. Current Research in Food Science, 3, 19–29.

    Article  CAS  Google Scholar 

  • Wagner, C. E., Barbati, A. C., Engmann, J., Burbidge, A. S., & Mckinley, G. H. (2017). Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocolloids, 69, 242–254.

    Article  CAS  Google Scholar 

  • Wang, Z., Zhou, J., Marshall, B., Rekaya, R., Ye, K., & Liu, H.-X. (2020). SARS-CoV-2 receptor ACE2 is enriched in a subpopulation of mouse tongue epithelial cells in nongustatory papillae but not in taste buds or embryonic oral epithelium. ACS Pharmacology & Translational Science, 3, 749–758.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhu, Y., Ji, Z., & Chen, J. (2021). Lubrication and Sensory Properties of Emulsion Systems and Effects of Droplet Size Distribution. Food, 10, 3024.

    Article  CAS  Google Scholar 

  • Wang, X., Chen, J., & Wang, X. (2022). In situ oral lubrication and smoothness sensory perception influenced by tongue surface roughness. Journal of the Science of Food and Agriculture, 102, 132–138.

    Article  CAS  Google Scholar 

  • Weber, E. H., Murray, D. J., & Ross, H. E. (2018). EH Weber on the tactile senses. Psychology Press.

    Book  Google Scholar 

  • Wilkinson, C., Dijksterhuis, G., & Minekus, M. (2000). From food structure to texture. Trends in Food Science & Technology, 11, 442–450.

    Article  CAS  Google Scholar 

  • Withers, C., Gosney, M. A., & Methven, L. (2013). Perception of thickness, mouth coating and mouth drying of dairy beverages by younger and older volunteers. Journal of Sensory Studies, 28, 230–237.

    Article  Google Scholar 

  • Witt, T., & Stokes, J. R. (2015). Physics of food structure breakdown and bolus formation during oral processing of hard and soft solids. Current Opinion in Food Science, 3, 110–117.

    Article  Google Scholar 

  • Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12, 1–5.

    Article  Google Scholar 

  • Yu, L., Witt, T., Bonilla, M. R., Turner, M., Fitzgerald, M., & Stokes, J. (2019). New insights into cooked rice quality by measuring modulus, adhesion and cohesion at the level of an individual rice grain. Journal of Food Engineering, 240, 21–28.

    Article  Google Scholar 

  • Zahn, S., Hoppert, K., Ullrich, F., & Rohm, H. (2013). Dairy-based emulsions: Viscosity affects fat difference thresholds and sweetness perception. Food, 2, 521–533.

    Article  Google Scholar 

  • Zeng, F.-G. (2020). A unified theory of psychophysical laws in auditory intensity perception. Frontiers in Psychology, 11, 1459.

    Article  Google Scholar 

  • Zhang, Y. V., Aikin, T. J., Li, Z., & Montell, C. (2016). The basis of food texture sensation in Drosophila. Neuron, 91, 863–877.

    Article  CAS  Google Scholar 

  • Zhang, L., Shimada, A., Kusunoki, T., Inoue, T., Kawamoto, A., & Takahashi, K. (2022). Effect of ageing and tooth loss on sensory function of alveolar mucosa. Journal of Oral Rehabilitation, 49, 391–397.

    Article  Google Scholar 

  • Zhou, J., Duong, L. R., & Simoncelli, E. P. (2022). A common framework for discriminability and perceived intensity of sensory stimuli. bioRxiv.

    Google Scholar 

  • Zhu, F., Zhong, Y., Ji, H., Ge, R., Guo, L., Song, H., Wu, H., Jiao, P., Li, S., & Wang, C. (2022). ACE2 and TMPRSS2 in human saliva can adsorb to the oral mucosal epithelium. Journal of Anatomy, 240, 398–409.

    Article  CAS  Google Scholar 

  • Zigler, M. (1923). An experimental study of the perception of stickiness. The American Journal of Psychology, 73–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alissa A. Nolden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makame, J., Nolden, A.A. (2024). Psychophysics of Texture Perception. In: Rosenthal, A., Chen, J. (eds) Food Texturology: Measurement and Perception of Food Textural Properties. Springer, Cham. https://doi.org/10.1007/978-3-031-41900-3_5

Download citation

Publish with us

Policies and ethics