Skip to main content

The History of Auditory Research in Lizards

  • Chapter
  • First Online:
A History of Discoveries on Hearing

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 77))

  • 205 Accesses

Abstract

Although many early anatomical papers touched on lizard ears, the absence of accurate tools severely limited progress. After 1950, new techniques permitted detailed anatomical descriptions and revealed the remarkable variations between the auditory papillae of different lizard families and a recognition of their usefulness of the variations for systematics. From the late 1960s, much new anatomical and physiological work ensued from a number of labs, including recordings from the auditory nerve. Cochlear microphonic recordings were initially dominant, but lost significance due to their poor interpretability. The various studies led to a new understanding of the relationships between structure and function and of the evolutionary and functional significances of the large differences between lizard families. The structural characteristics of lizard papillae enabled modeling of how hair cells couple to produce both sensitive- and frequency-selective responses in the auditory nerve. They also permitted a localization of the active process of lizard ears to the hair cell bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED, Craik KJW, Sturdy RS (1938) The electrical response of the auditory mechanism in cold-blooded vertebrates. Proc R Soc Lond B Biol Sci 125:435–455

    Article  Google Scholar 

  • Authier S, Manley GA (1995) A model of frequency tuning in the basilar papilla of the Tokay gecko, Gekko gecko. Hear Res 82:1–13

    Article  CAS  PubMed  Google Scholar 

  • Ayers H (1892) Vertebrate cephalogenesis. II. A contribution to the morphology of the vertebrate ear, with a reconsideration of its functions. J Morphol 6:1–360

    Article  Google Scholar 

  • Baeckens S, Llusia D, García-Roa R, Martín J (2019) Lizard calls convey honest information on body size and bite performance: a role in predator deterrence? Behav Ecol Sociobiol 73:87

    Article  Google Scholar 

  • Bagger-Sjoback D (1976) The cellular organization and nervous supply of the basilar papilla in the lizard, Calotes versicolor. Cell Tissue Res 165:141–156

    Article  CAS  PubMed  Google Scholar 

  • Baird IL (1966) Discussion of the reptilian ear. Am Zool 6:431–436

    Article  CAS  PubMed  Google Scholar 

  • Baird IL (1970) The anatomy of the reptilian ear. In: Gans C, Parsons TS (eds) Biology of the Reptilia, vol 2. Academic Press, New York, pp 193–275

    Google Scholar 

  • Bergevin C (2011) Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards. J Assoc Res Otolaryngol 12:203–217

    Article  PubMed  Google Scholar 

  • Bergevin C, Shera C (2010) Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards. J Acoust Soc Am 127:2398–2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergevin C, Velenovsky DS, Bonine KE (2010) Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions. Biophys J 99:1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergevin C, Manley GA, Köppl C (2015) Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms. Proc Natl Acad Sci U S A 112(11):3362–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camparetti A (1789) Observationes anatomincae de aure interna comparata. Patavii Apud S. Bartholomaeum, Typographia jo: Antonii Conzatti

    Book  Google Scholar 

  • Cantwell LR, Forrest TG (2013) Response of Anolis sagrei to acoustic calls from predatory and nonpredatory birds. J Herpetol 47(2):293–298

    Article  Google Scholar 

  • Chiappe ME, Kozlov AS, Hudspeth AJ (2007) The structural and functional differentiation of hair cells in a lizard’s basilar papilla suggests an operational principle of amniote cochleas. J Neurosci 27(44):11978–11985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Carr CE (2018) Processing of directional information in the gecko auditory nerve. Acta Acust United Acust 104:848–851

    Article  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J Exp Biol 208:1209–1217

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2008) Acoustical coupling of lizard eardrums. J Assoc Res Otolaryngol 9:407–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212

    Article  CAS  PubMed  Google Scholar 

  • Clason E (1873) Die Morphologie des Gehörorgans der Eidechsen. In: Hasse C (ed) Anatomische Studien. Verlag W. Engelmann, Leipzig, pp 300–376

    Google Scholar 

  • Corti A (1851) Recherches sur l’organe de l’ouie des mammifères. Première partie: Limacon. Zeits. wiss. Zool 3:109–169

    Google Scholar 

  • Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111

    Article  CAS  PubMed  Google Scholar 

  • De Burlet HM (1929) Zur vergleichenden Anatomie und Physiologie des perilymphatischen Raumes. Acta Otolaryngol 13(2):153–187

    Article  Google Scholar 

  • Dierkes K, Lindner B, Jülicher F (2008) Enhancement of sensitivity gain and frequency tuning by coupling of active hair bundles. Proc Natl Acad Sci U S A 105:18669–18674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eatock RA, Manley GA (1981) Auditory-nerve fibre activity in the Tokay gecko: II. Temperature effect on tuning. J Comp Physiol A 142:219–226

    Article  Google Scholar 

  • Eatock RA, Manley GA, Pawson L (1981) Auditory-nerve fibre activity in the Tokay gecko: I. Implications for cochlear processing. J Comp Physiol A 142:203–218

    Article  Google Scholar 

  • Eatock RA, Weiss TF, Otto KL (1991) Dependence of discharge rate on sound pressure level in cochlear nerve fibers of the alligator lizard: implications for cochlear mechanisms. J Neurophysiol 65:1580–1597

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Saeki M, Hutzler MJ (1993) Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard’s cochlea. J Neurosci 13:1767–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estes R, De Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard families. Stanford University Press, Stanford, pp 119–281

    Google Scholar 

  • Evans LT (1936) The development of the cochlea in the gecko, with special reference to the cochlea-lagena ratio and its bearing on vocality and social behaviour. Anat Rec 64:187–201

    Article  Google Scholar 

  • Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10:421–425

    Article  Google Scholar 

  • Frishkopf LS, DeRosier DJ (1983) Mechanical tuning of the free-standing stereociliary bundles and frequency analysis in the alligator lizard cochlea. Hear Res 12:393–404

    Article  CAS  PubMed  Google Scholar 

  • Gaupp E (1898) Ontogenese und Phylogenese des schall-leitenden Apparates bei den Wirbeltieren. Erg Anat Entwicklungsgesch 8:900–1149

    Google Scholar 

  • Gelfand M, Piro O, Magnasco MO, Hudspeth AJ (2010) Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the Tokay gecko’s cochlea. PLoS One 5(6):e11116

    Article  PubMed  PubMed Central  Google Scholar 

  • Grey O (1955) A brief survey of the phylogenesis of the labyrinth. J Laryngol Otol 69:151–179

    Article  Google Scholar 

  • Hamilton DW (1960) Observations on the morphology of the inner ear in certain gekkonoid lizards. Univ Kansas Sci Bull 41:983–1024

    Google Scholar 

  • Hamilton DW (1964) The inner ear of lizards: gross structure. J Morphol 115:255–272

    Article  CAS  PubMed  Google Scholar 

  • Hepp-Reymond M-L, Palin J (1968) Patterns in the cochlear potentials of the Tokay gecko (Gekko gecko). Acta Otolaryngol 65:270–292

    Article  CAS  PubMed  Google Scholar 

  • Hibbits TJ, Whiting JM, Stuart-Fox DM (2007) Shouting the odds: vocalization signals status in a lizard. Behav Ecol Sociobiol 61:1169–1176

    Article  Google Scholar 

  • Hoare M, Labra A (2013) Searching for the audience of the weeping lizard’s distress call. Ethology 119:860–868

    Article  Google Scholar 

  • Holton T, Hudspeth AJ (1983) A micromechanical contribution to cochlear tuning and tonotopic organization. Science 222:508–510

    Article  CAS  PubMed  Google Scholar 

  • Holton T, Weiss TF (1983a) Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones. J Physiol 345:205–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holton T, Weiss TF (1983b) Frequency selectivity of hair cells and nerve fibers in the alligator lizard cochlea. J Physiol 345:241–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Lubarsky K, Tent T, Blumstein DT (2011) Take only pictures, leave only…fear? The effects of photography on the West Indian anole Anolis cristatellus. Curr Zool 57:77–82

    Article  Google Scholar 

  • Johnstone JR, Johnstone BM (1969) Unit responses from the lizard auditory nerve. Exp Neurol 24:528–537

    Article  CAS  PubMed  Google Scholar 

  • Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, Oxford

    Google Scholar 

  • Köppl C (1988) Morphology of the basilar papilla of the bobtail lizard Tiliqua rugosa. Hear Res 35:209–228

    Article  PubMed  Google Scholar 

  • Köppl C, Authier S (1995) Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko. Hear Res 82:14–25

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: II. Tonotopic organization and innervation pattern of the basilar papilla. J Comp Physiol A 167:101–112

    Article  Google Scholar 

  • Köppl C, Manley GA (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: III. Patterns of spontaneous and tone-evoked nerve-fibre activity. J Comp Physiol A 167:113–127

    Article  Google Scholar 

  • Köppl C, Manley GA (1992) Functional consequences of morphological trends in the evolution of lizard hearing organs. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 489–509

    Chapter  Google Scholar 

  • Köppl C, Manley GA (1993a) Acoustic distortion products in the ear canal of the bobtail lizard. II: Suppression tuning characteristics. J Acoust Soc Am 93:2834–2844

    Article  Google Scholar 

  • Köppl C, Manley GA (1993b) Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics. Hear Res 71:157–169

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA (1994) Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Hear Res 72:159–170

    Article  PubMed  Google Scholar 

  • Köppl C, Manley GA, Johnstone BM (1990) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: V. Seasonal effects of anaesthesia. J Comp Physiol A 167:139–144

    Article  Google Scholar 

  • Lee MSY (1998) Convergent evolution and character correlation in burrowing reptiles: toward a resolution of squamate phylogeny. Biol J Linn Soc 65:369–453

    Article  Google Scholar 

  • Luo ZX (2007) Transformation and diversification in early mammal evolution. Nature 450:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Manley GA (1972a) The middle ear of the Tokay gecko. J Comp Physiol 81:239–250

    Article  Google Scholar 

  • Manley GA (1972b) Frequency response of the middle ear of geckos. J Comp Physiol 81:251–258

    Article  Google Scholar 

  • Manley GA (1976) Auditory responses from the medulla of the monitor lizard Varanus bengalensis. Brain Res 102:329–334

    Article  Google Scholar 

  • Manley GA (1977) Response patterns and peripheral origin of auditory nerve fibres in the monitor lizard, Varanus bengalensis. J Comp Physiol 118:249–260

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. Prog Sens Physiol 2:49–134

    Article  Google Scholar 

  • Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, Heidelberg

    Book  Google Scholar 

  • Manley GA (1997) Diversity in hearing-organ structure and the characteristics of spontaneous otoacoustic emissions in lizards. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp 32–38

    Google Scholar 

  • Manley GA (2000) Do non-mammals have a cochlear amplifier? In: Wada H, Takasaka T, Ohyama K, Ikeda K, Koike T (eds) Recent developments in auditory mechanics. World Scientific, Singapore, pp 499–505

    Chapter  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in non-mammals. J Neurophysiol 86:541–549

    Article  CAS  PubMed  Google Scholar 

  • Manley GA (2002) Evolution of structure and function of the hearing organ of lizards. J Neurobiol 53:202–211

    Article  PubMed  Google Scholar 

  • Manley GA (2003) The tectorial membrane stabilizes spontaneous otoacoustic emissions. In: Gummer AW, Dalhoff E, Nowotny M, Scherer MP (eds) Biophysics of the cochlea: from molecules to models. World Scientific, Singapore, pp 480–487

    Chapter  Google Scholar 

  • Manley GA (2004a) The lizard basilar papilla and its evolution. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 200–223

    Chapter  Google Scholar 

  • Manley GA (2004b) Spontaneous otoacoustic emissions in monitor lizards. Hear Res 189:41–57

    Article  PubMed  Google Scholar 

  • Manley GA (2006) Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae. Hear Res 212:33–47

    Article  PubMed  Google Scholar 

  • Manley GA (2010) An evolutionary perspective on middle ears. Hear Res 263:3–8

    Article  PubMed  Google Scholar 

  • Manley GA (2011) Lizard auditory papillae: an evolutionary kaleidoscope. Hear Res 273:59–64

    Article  PubMed  Google Scholar 

  • Manley GA (2016) Comparative auditory neuroscience: understanding the evolution and function of ears. J Assoc Res Otolaryngol 18:1–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Manley GA, Clack JA (2004) An outline of the evolution of vertebrate hearing organs. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 1–26

    Chapter  Google Scholar 

  • Manley GA, Gallo L (1997) Otoacoustic emissions, hair cells and myosin motors. J Acoust Soc Am 102:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle-ear function in the Guinea pig. J Acoust Soc Am 56:571–576

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C (1994) Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects. Hear Res 72:171–180

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C (2008) What have lizard ears taught us about auditory physiology? Hear Res 238:3–11

    Article  PubMed  Google Scholar 

  • Manley GA, Kraus JEM (2010) Exceptional high-frequency hearing and matched vocalizations in Australian pygopod geckos. J Exp Biol 213:1876–1885

    Article  PubMed  Google Scholar 

  • Manley GA, Van Dijk P (2008) Otoacoustic emissions in amphibians, lepidosaurs and archosaurs. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing, Springer handbook of auditory research, vol 30. Springer, New York, pp 211–260

    Chapter  Google Scholar 

  • Manley GA, Yates G, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33:181–190

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1990a) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: I. Frequency tuning of auditory-nerve fibres. J Comp Physiol A 167:89–99

    Article  Google Scholar 

  • Manley GA, Yates GK, Köppl C, Johnstone BM (1990b) Peripheral auditory processing in the bobtail lizard Tiliqua rugosa: IV. Phase locking of auditory-nerve fibres. J Comp Physiol A 167:129–138

    Article  Google Scholar 

  • Manley GA, Haeseler C, Brix J (1991) Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chicken’s cochlea. Hear Res 56:211–226

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C, Johnstone BM (1993) Acoustic distortion products in the ear canal of the bobtail lizard. I: General characteristics. J Acoust Soc Am 93:2820–2933

    Article  Google Scholar 

  • Manley GA, Köppl C, Sneary M (1999) Reversed tonotopic map of the basilar papilla in Gekko gecko. Hear Res 131:107–116

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Kirk D, Köppl C, Yates GK (2001) In-vivo evidence for a cochlear amplifier in the hair cell bundle of lizards. Proc Natl Acad Sci U S A 98:2826–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manley GA, Sienknecht U, Köppl C (2004) Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink. J Neurophysiol 92:2685–2693

    Article  CAS  PubMed  Google Scholar 

  • Manley GA, Köppl C, Sienknecht UJ (2014) The remarkable ear of geckos and pygopods. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing research. Springer, New York, pp 111–132

    Google Scholar 

  • Manley GA, Köppl C, Bergevin C (2015) Common substructure in otoacoustic emission spectra of land vertebrates. In: Karavitaki KD, Corey DP (eds) Mechanics of hearing: protein to perception, American Institute of Physics conference proceedings, vol 1703. AIP, Melville

    Google Scholar 

  • Manley GA, Wartini A, Schwabedissen G, Siegl E (2018) Spontaneous otoacoustic emissions in teiid lizards. Hear Res 363:98–108

    Article  PubMed  Google Scholar 

  • Miller MR (1966) The cochlear duct of lizards. Proc Calif Acad Sci 33:255–359

    Google Scholar 

  • Miller MR (1973a) Scanning electron microscope studies of some lizard basilar papillae. Am J Anat 138:301–330

    Article  CAS  PubMed  Google Scholar 

  • Miller MR (1973b) A scanning electron microscope study of the papilla basilaris of Gekko gecko. Zeitschr Zellforsch 136:307–328

    Article  CAS  Google Scholar 

  • Miller MR (1974) Scanning electron microscope studies of some skink papillae basilares. Cell Tissue Res 150:125–141

    Article  CAS  PubMed  Google Scholar 

  • Miller MR (1978a) Scanning electron microscope studies of the papilla basilaris of some turtles and snakes. Am J Anat 151:409–435

    Google Scholar 

  • Miller MR (1978b) Further scanning electron microscope studies of lizard auditory papillae. J MorphoI 156:381–418

    Google Scholar 

  • Miller MR (1980) The reptilian cochlear duct. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin, pp 169–204

    Chapter  Google Scholar 

  • Miller MR (1981) Scanning electron microscope studies of the auditory papillae of some iguanid lizards. Am J Anat 162:55–72

    Google Scholar 

  • Miller MR (1985) Quantitative studies of auditory hair cells and nerves in lizards. J Comp Neurol 232:1–24

    Article  CAS  PubMed  Google Scholar 

  • Miller MR (1992) The evolutionary implications of the structural variations in the auditory papilla of lizards. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 463–487

    Chapter  Google Scholar 

  • Miller MR, Beck J (1988) Auditory hair cell innervational patterns in lizards. J Comp Neurol 271:604–628

    Article  CAS  PubMed  Google Scholar 

  • Mulroy MJ (1974) Cochlear anatomy of the alligator lizard. Brain Behav Evol 10:69–87

    Article  CAS  PubMed  Google Scholar 

  • Mulroy MJ, Williams RS (1987) Auditory stereocilia in the alligator lizard. Hear Res 25:11–21

    Article  CAS  PubMed  Google Scholar 

  • Mulroy MJ, Altmann DW, Weiss TF, Peake WT (1974) Intracellular electric responses to sound in a vertebrate cochlea. Nature 249:482–485

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DW, Turner RG (1983) Micromechanics of the reptilian ear. Audiology 22:530–544

    Article  CAS  PubMed  Google Scholar 

  • Peake WT, Ling A (1980) Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity. J Acoust Soc Am 67:1736–1745

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Cembranos A, Pérez-Mellado V (2020) It sounds like food: phonotaxis of a diurnal lizard. Behav Process 179:104217

    Article  Google Scholar 

  • Pickles JO, Brix J, Comis O, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizard basilar papillae. Hear Res 41:31–42

    Article  CAS  PubMed  Google Scholar 

  • Reichert C (1837) Ueber die Visceralbogen der Wirbelthiere im allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Müllers Arch Physiol 1837:120–222

    Google Scholar 

  • Retzius G (1884) Das Gehororgan der Wirbelthiere. II. Das Gehororgan der Reptilien, Vogel und Saugethiere. Commission bei Samson & Wallin, Stockholm

    Google Scholar 

  • Rosowski JJ, Peake WT, White JR (1984) Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard. Hear Res 13:141–158

    Article  CAS  PubMed  Google Scholar 

  • Sakaluk S, Belwood J (1984) Gecko phonotaxis to cricket calling song: a case of satellite predation. Anim Behav 32:659–662

    Article  Google Scholar 

  • Schmidt RS (1964) Phylogenetic significance of lizard cochlea. Copeia 3:542–549

    Article  Google Scholar 

  • Shute CCD, d’A Bellairs A (1953) The cochlear apparatus of Geckonidae and Pygopodidae and its bearing on the affinities of these groups of lizards. Proc Zool Soc Lond 123:695–709

    Article  Google Scholar 

  • Suga N, Campbell HW (1967) Frequency sensitivity of single auditory neurons in the gecko Coleonyx variegatus. Science 157:88–90

    Article  CAS  PubMed  Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) Central projections of cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547

    Article  CAS  PubMed  Google Scholar 

  • Turner RG (1987) Neural tuning in the granite spiny lizard. Hear Res 26:287–299

    Article  CAS  PubMed  Google Scholar 

  • Turner RG, Muraski AA, Nielsen DW (1981) Cilium length: influence on neural tonotopic organization. Science 213:1519–1521

    Article  CAS  PubMed  Google Scholar 

  • Underwood G (1957) On the lizards of the family Pygopodidae. J Morphol 100(2):207–268

    Article  Google Scholar 

  • Utz P, Freed P, Aguilar R, Hošek J (eds) (2022) The Reptile Database. http://www.reptile-database.org. Accessed 20 May 2022

  • Van Dijk P, Manley GA (2013) The effects of air pressure on spontaneous otoacoustic emissions of lizards. J Assoc Res Otolaryngol 14:309–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Versluys J (1898) Die mittlere und äussere Ohrsphäre der Lacertilia und Rhynchocephalia. Thesis, Gustav Fischer Verlag, Jena

    Google Scholar 

  • Vidal N, Hedges SB (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C R Biol 332:129–139

    Article  CAS  PubMed  Google Scholar 

  • Vilfan A, Duke T (2008) Frequency clustering in spontaneous otoacoustic emissions from a lizard’s ear. Biophys J 95:4622–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitousek M, Adelman JS, Gregory NC, St. Clair JJH (2007) Heterospecific alarm call recognition in a non-vocal reptile. Biol Lett 3:632–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss TF, Leong R (1985) A model for signal transmission in an ear having hair cells with free-standing stereocilia. III. Micromechanical stage. Hear Res 20:157–174

    Article  CAS  PubMed  Google Scholar 

  • Weiss TF, Mulroy MJ, Turner RG, Pike CL (1976) Tuning of single fibres in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90

    Article  CAS  PubMed  Google Scholar 

  • Werner YL (1972) Temperature effects on inner-ear sensitivity in six species of iguanid lizards. J Herpetol 6:147–177

    Article  Google Scholar 

  • Werner YL, Wever EG (1972) The function of the middle ear in lizards: Gekko gecko and Eublepharis macularius (Gekkonidae). J Exp Zool 179:1–16

    Article  Google Scholar 

  • Werner YL, Igić PG, Seifan M, Saunders JC (2002) Effects of age and size in the ears of gekkonomorph lizards: middle ear sensitivity. J Exp Biol 205:3215–3223

    Article  PubMed  Google Scholar 

  • Wever EG (1970) The lizard ear: Scincidae. J Morphol 132:277–292

    Article  CAS  PubMed  Google Scholar 

  • Wever EG (1974) The evolution of vertebrate hearing, Ch. 13. In: Autrum H, Jung R, Loewenstein WR, Mackay DM, Teuber HL (eds) Handbook of sensory physiology, vol V/II. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Wever EG (1978) The reptile ear. Princeton University Press, Princeton

    Google Scholar 

  • Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci U S A 16(5):344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wever EG, Werner YL (1970) The function of the middle ear in lizards: Crotaphytus collaris (Iguanidae). J Exp Zool I75:327–342

    Article  Google Scholar 

  • Wever EG, Vernon JA, Peterson EA, Crowley DE (1963) Auditory responses in the Tokay gecko. Proc Natl Acad Sci U S A 50:806–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wever EG, Vernon JA, Crowley DE, Peterson EA (1964) Electrical output of lizard ear: relation to hair cell population. Science 150:1172–1174

    Article  Google Scholar 

  • Wit HP, van Dijk P, Manley GA (2012) A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae. J Acoust Soc Am 132:3273–3279

    Article  PubMed  Google Scholar 

  • Wit H, Manley GA, van Dijk P (2019) Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Hear Res 385:107840

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Requirements

Geoffrey A. Manley declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manley, G.A. (2024). The History of Auditory Research in Lizards. In: Ketten, D.R., Coffin, A.B., Fay, R.R., Popper, A.N. (eds) A History of Discoveries on Hearing. Springer Handbook of Auditory Research, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-031-41320-9_5

Download citation

Publish with us

Policies and ethics