Skip to main content

Carbon Sequestration in Agroforestry and Horticulture Based Farming Systems: Mitigating Climate Change and Advancing Food and Nutrition Security

  • Chapter
  • First Online:
Emerging Solutions in Sustainable Food and Nutrition Security

Abstract

Today, changing climate is gaining great attention among the scientific community over the past few decades. Deforestation, unsustainable land use practices, intensive farming practices, higher inputs of synthetic fertilizers, overuses of inorganic fertilizers, industrialization and other anthropogenic and natural process are widely considered to be driving factors for climate change and global warming. No doubt, intensive agriculture enhances the food availability but quality is low due to low nutrients in fruits that affect the health of the people and release GHGs (greenhouse gases) into the atmosphere results in environmental degradation. In this context, agroforestry (tree-crop-livestock’s combinations) and horticulture-based farming systems (HBFs) (primarily fruit tree & crops) are well known and based on the principles of ecological and sustainable intensification, popular among academician, researchers and policy makers, and are gaining wide recognition due to its multifarious benefits and ecosystem services. Tree-crop-livestock’s combination in various models of agroforestry systems (AFs) in a single piece of land creates more diversifying products (timber, fuelwood & NTFPs), enhances soil fertility, regulates water and air quality, promotes efficient closed nutrient cycling, increase biomass and litter production, solve hunger problems by FNS (through nutritive fruits), and reduce atmospheric CO2 through carbon (C) sequestration. Agroforestry itself is proven a viable strategy to combat climate change through C sequestration. However, horticulture-based farming system (HBFs)nurture the populations by producing highly nutritive and quality fruits along with minimizing the emissions of GHGs (mainly C) through the process of C sequestration. In the lieu of the above, this chapter discusses about C sequestration potential in various AFs and explores sequestration possibilities in HBFs in the tropics. This chapter explore “how the C sequestration ability of the horticulture based integrated farming systems compares with other agroforestry models in the tropics?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahkami AH, White RA, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243. https://doi.org/10.1016/j.rhisph.2017.04.012

    Article  Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27

    Article  CAS  Google Scholar 

  • Amezquita MC, Ibrahim M, Llanderal T, Buurman P, Amezquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21:31–49

    Article  Google Scholar 

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22

    Article  CAS  Google Scholar 

  • Awasthi P, Bargali K, Bargali SS, Jhariya MK (2022) Structure and functioning of Coriaria nepalensis wall dominated Shrublands in degraded hills of Kumaun Himalaya. I. Dry matter dynamics. Land Degrad Dev 33(9):1474–1494. https://doi.org/10.1002/ldr.4235

    Article  Google Scholar 

  • Bailey A (2016) Mainstreaming agrobiodiversity in sustainable food systems. Scientific foundations for an agrobiodiversity index-summary. Bioversity International, Rome, p 30

    Google Scholar 

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79:343–353

    Article  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press Inc., CRC Press, Tayler and Francis Group, Palm Bay, FL/Oakville, ON, p 400. https://doi.org/10.1201/9780429276026. ISBN:9781771888110

    Book  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256(1):67–83

    Article  CAS  Google Scholar 

  • Bhandari DC, Meghwal PR, Lodha S (2014) Horticulture based production systems in Indian arid regions. In: Nandwani D (ed) Sustainable horticultural systems, sustainable development and biodiversity, vol 2. Springer International Publishing, Cham, pp 19–49. https://doi.org/10.1007/978-3-319-06904-3_2. isbn:978-3-319-06903-6

  • Bhatia A, Pathak H, Aggarwal PK (2004) Inventory of methane and nitrous oxide emissions from agricultural soils of India and their global warming potential. Curr Sci 87:317–324

    CAS  Google Scholar 

  • Bhavya VP, Kumar A, Kumar S (2017) Land use systems to improve carbon sequestration in soils for mitigation of climate change. Int J Chem Stud 5(4):2019–2021

    Google Scholar 

  • Bloomfield J, Pearson HL (2000) Land use, land-use change, forestry, and agricultural activities in the clean development mechanism: estimates of greenhouse gas offset potential. Mitig Adapt Strateg Glob Chang 5:9–24

    Article  Google Scholar 

  • Borah RP, Chandra A (2010) Carbon sequestration potential of selected bamboo species of Northeast India. Ann For 18(2):171–180

    Google Scholar 

  • Brandt M, Rasmussen K, Hiernaux P, Herrmann S, Tucker CJ, Tong X, Tian F, Mertz O, Kergoat L, Mbow C, David J, Melocik K, Dendoncker M, Vincke C, Fensholt R (2018) Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat Geosci 11(5):328–333. https://doi.org/10.1038/s41561-018-0092-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Sathaye J, Cannell M, Kauppi P (1996) Management of forests for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH (eds) Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. Cambridge University Press, New York

    Google Scholar 

  • Cadisch G, Oliveira OC, de Cantarutti R, Carvalho E, Urquiaga S (1998) The role of legume quality in soil carbon dynamics in savannah ecosystems. In: Bergstrom I, Kirchmann H (eds) Carbon and nutrient dynamics in natural and agricultural tropical ecosystems. CAB International, Wallingford

    Google Scholar 

  • Chandran P, Ray SK, Durge SL (2016) Scope of horticultural land-use system in enhancing carbon sequestration in ferruginous soils of semi-arid tropics. Curr Sci 97(7):1039–1046

    Google Scholar 

  • Chauhan SK, Sharma SC, Chauhan R, Gupta N, Srivastava R (2010) Accounting poplar and wheat productivity for carbon sequestration in agrisilviculture system. Indian Forester 136(9):1174–1182

    Google Scholar 

  • Chavan BL, Rasal GB (2011) Sequestered carbon potential and status of Eucalyptus tree. Int J Appl Eng Technol 1(1):41–47

    Google Scholar 

  • Chavan BL, Rasal G (2012) Total sequestered carbon stock of Mangifera indica. J Environ Earth Sci 2:37–48

    Google Scholar 

  • Chhabra A, Manjunath KR, Panigrahy S, Parihar JS (2009) Spatial pattern of methane emissions from Indian livestock. Curr Sci 96:683–689

    CAS  Google Scholar 

  • Cole RJ (2010) Social and environmental impacts of payments for environmental services for agroforestry on small-scale farms in southern Costa Rica. Int J Sustain Dev World Ecol 17:208–216

    Article  Google Scholar 

  • Colmenares OM, Brindis RC, Verduzco CV, Grajales MP, Gómez MU (2020) Horticultural agroforestry systems recommended for climate change adaptation: a review. Agric Rev 41:14–24

    Google Scholar 

  • Das SK, Itnal CJ (1994) Capability based land use system: role in diversifying dryland agriculture in dryland area. Bull Indian Soc Soil Sci 16:92–100

    Google Scholar 

  • Das A, Yadav GS, Layek J, Lal R, Meena RS, Babu S, Ghosh PK (2020) Carbon management in diverse land-use systems of Eastern Himalayan Subtropics. In: Ghosh P, Mahanta S, Mandal D, Mandal B, Ramakrishnan S (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore, pp 123–142

    Chapter  Google Scholar 

  • Datta A, Basak N, Chaudhari SK, Sharma DK (2015) Effect of horticultural land uses on soil properties and organic carbon distribution in a reclaimed sodic soil. J Indian Soc Soil Sci 63(3):294–303

    Article  Google Scholar 

  • de Stefano A, Jacobson MG (2018) Soil carbon sequestration in agroforestry systems: a meta analysis. Agrofor Syst 92:285–299

    Google Scholar 

  • Demenois J, Torquebiau E, Arnoult MH, Eglin T, Masse D, Assouma MH, Blanfort V, Chenu C, Chapuis-Lardy L, Médoc JM, Sall SN (2020) Barriers and strategies to boost soil carbon sequestration in agriculture. Front Sustain Food Syst 4:37

    Article  Google Scholar 

  • Dey SK (2005) A preliminary estimation of carbon stock sequestrated through rubber (Hevea brasiliensis) plantation in north eastern region of India. Indian Forester 131:1429–1436

    Google Scholar 

  • Dhyani SK, Handa AK, Uma (2013) Area under agroforestry in India: an assessment for present status and future perspective. Indian J Agrofor 15(1):1–11

    Google Scholar 

  • Dollinger J, Jose S (2018) Agroforestry for soil health. Agrofor Syst 92:213–219. https://doi.org/10.1007/s10457-018-0223-9

    Article  Google Scholar 

  • FAOSTAT (2018) FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. www.fao.org/faostat/en/#home

  • Forrester DI, Bauhus J, Cowie AL, Jerome K, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen fixing trees: a review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Gabrielsson S, Ramasar V (2013) Widows: agents of change in a climate of water uncertainty. J Clean Prod 60:34–42. https://doi.org/10.1016/J.JCLEPRO.2012.01.034

    Article  Google Scholar 

  • Ganeshamurthy AN, Ravindra V, Rupa TR (2019) Carbon sequestration potential of mango orchards in India. Curr Sci 117(12):2006–2013

    Article  CAS  Google Scholar 

  • Ganeshamurthy AN, Kalaivanan D, Rajendiran S (2020) Carbon sequestration potential of perennial horticultural crops in Indian tropics. In: Ghosh P, Mahanta S, Mandal D, Mandal B, Ramakrishnan S (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore, pp 333–348

    Chapter  Google Scholar 

  • Gera M, Mohan G, Bisht NS, Gera N (2006) Carbon sequestration potential under agroforestry in Rupnagar district of Punjab. Indian Forester 132(5):543–555

    CAS  Google Scholar 

  • Ghosh PK, Mahanta SK (2014) Carbon sequestration in grassland systems. Range Manage Agrofor 35(2):173–181

    Google Scholar 

  • Gupta MK, Sharma SD (2011) Sequestrated carbon: organic carbon pool in the soils under different forest covers and land uses in Garhwal Himalayan region of India. Int J Agric For 1(1):14–20

    Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Change Biol 16:427–438

    Article  Google Scholar 

  • Hangarge (2012) Carbon sequestration potential of tree species in Somjaichirai (sacred grove) at Nandghur village, in Bihar region of Pune district, Maharashtra state, India. Ann Biol Res 3(7):3426–3429

    CAS  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M, Hiltner L (2008) A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Ueberneuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie und unterbesonderer Ber Ucksichtigung der Grundungung und Brache. Arb Deut Landw Gesell 98:59–78

    Google Scholar 

  • Howlett D (2009) Environmental amelioration potential of silvopastoral agroforestry systems in Spain: soil carbon sequestration and phosphorus retention. Ph.D. dissertation, University of Florida, Gainesville

    Google Scholar 

  • Howlett DS, Moreno G, Mosquera-Losada MR, Nair PK, Nair VD (2011a) Soil carbon storage as influenced by tree cover in the Dehesa cork oak silvopasture of central-western Spain. J Environ Monit 13(7):1897–1904

    Article  CAS  PubMed  Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair PKR, Nair VD, Rigueiro-Rodríguez A (2011b) Soil C storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:784–790

    Article  Google Scholar 

  • Ilyas S (2013) Allometric equation and carbon sequestration of Acacia mangium Willd.in coal mining reclamation areas. Civil Environ Res 3(1):8–16

    Google Scholar 

  • Jaiarree S, Chidthaisong A, Tangtham N, Polprasert C, Sarobol E, Tyler SC (2014) Carbon budget and sequestration potential in a sandy soil treated with compost. Land Degrad Dev 25(2):120–129. https://doi.org/10.1002/ldr.1152

  • Jana BK, Biswas S, Majumder M, Roy PK, Mazumdar A (2009) Comparative assessment of carbon sequestration rate and biomass carbon potential of young Shorea robusta and Albizzia lebbek. Int J Hydro-Clim Eng Assoc Water Enviro-Model 1(2):1–15

    Google Scholar 

  • Janiola MDC, Marin RA (2016) Carbon sequestration potential of fruit tree plantations in Southern Philippines. J Biodivers Environ Sci 8(5):164–174

    Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh, pp 237–257. In: Zlatic M (ed) Precious forests-precious earth. InTech, Croatia, 286 pp. https://doi.org/10.5772/60841. isbn:978-953-51-2175-6

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10. eISBN:978-981-13-0253-4 (eBook), ISBN:978-981-13-0252-7 (Hardcover)

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer Nature, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1. eISBN:978-981-13-6830-1, Hardcover ISBN:978-981-13-6829-5

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press Inc., CRC Press, Tayler and Francis Group, Palm Bay, FL/Oakville, ON, p 335. https://doi.org/10.1201/9780429057274. ISBN:978-1-77188-790-8 (Hardcover), 978-0-42957-274-8 (E-book)

    Book  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A (2021a) Ecological intensification of natural resources for sustainable agriculture. Springer Nature, Singapore, p 655. https://doi.org/10.1007/978-981-33-4203-3. eISBN:978-981-334-203-3, Hardcover ISBN:978-981-334-206-6

    Book  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Kumar S, Raj A (2021b) Sustainable intensification for agroecosystem services and management. Springer Nature, Singapore, p 870. https://doi.org/10.1007/978-981-16-3207-5. eISBN:978-981-16-3207-5, Hardcover ISBN:978-981-16-3206-8

    Book  Google Scholar 

  • Jhariya MK, Meena RS, Banerjee A, Meena SN (2022) Natural resources conservation and advances for sustainability. Elsevier, Academic Press. https://doi.org/10.1016/C2019-0-03763-6. ISBN:9780128229767

    Google Scholar 

  • Joshi PK, Acharya SS, Chand R, Kumar A (2009) Agricultural sector: status and performance. In: Rai M et al (eds) State of Indian agriculture. National Academy of Agricultural Sciences, New Delhi, pp 1–32

    Google Scholar 

  • Kareemulla K, Rizvi RH, Singh R, Dwivedi RP (2002) Trees in rainfed agro-ecosystem: a socio-economic investigation in Bundelkhand region. Indian J Agrofor 4(1):53–56

    Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvi-pastoral systems on a sodic soil in northwestern India. Agrofor Syst 54:21–29

    Article  Google Scholar 

  • Kaye JP, Resh SC, Kaye MW, Chimner RA (2000) Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albiziatrees. Ecology 81(12):3267–3273

    Article  Google Scholar 

  • King KFS (1987) The history of agroforestry. In: Steppler H, PKR N (eds) Agroforestry: a decade of development. International Council for Research in Agroforestry (ICRAF), Nairobi, pp 3–13

    Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–221

    Article  Google Scholar 

  • Koppad AG, Tikhile P (2014) Role of forest on carbon sequestration in soils of Joida and Karwar Taluka of Uttara Kannada district. Indian Forester 140(3):260–264

    CAS  Google Scholar 

  • Kumar BM (2006) Carbon sequestration potential of tropical homegardens. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time tested example of sustainable agroforestry. Advance in agroforestry, vol 3. Springer, Dordrecht, pp 185–204

    Google Scholar 

  • Kumar AK (2010) Carbon sequestration: underexplored environmental benefits of Tarai agroforestry. Indian J Soil Conserv 38:125–131

    Google Scholar 

  • Kumar S, Satyapria HV, Singh KA (2009) Horti-pasture for nutritional security and economic stability in rainfed area. Progress Hortic 41(2):187–195

    Google Scholar 

  • Kumar S, Shukla AK, Satyapria Singh HV, Singh KA (2011) Horti-pasture for nutritional security and economic stability in rainfed area. Paper presented in National Conference on Horti Business Linking farmers with Market held at Dehradun from 28–31 May 2011, pp 18–19

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Lal R, Bruce J (1999) The potential of world cropland to sequester C and mitigate the greenhouse effect. Environ Sci Policy 2:177–185

    Article  CAS  Google Scholar 

  • Leakey R (1996) Definition of agroforestry revisited. Agrofor Today 8:1

    Google Scholar 

  • Lenka S, Lenka NK, Singh AB, Singh B, Raghuwanshi J (2017) Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean–wheat system of Central India. Environ Sci Pollut Res 24:4603–4612

    Article  CAS  Google Scholar 

  • Majumdar D, Pathak H, Kumar S, Jain MC (2002) Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agric Ecosyst Environ 9:283–293

    Article  Google Scholar 

  • Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a Gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 118:237–243

    Article  CAS  Google Scholar 

  • Mangalassery S, Dayal D, Meena SL, Ram B (2014) Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Curr Sci 107(8):1290–1293

    CAS  Google Scholar 

  • Manral V, Bargali K, Bargali SS, Jhariya MK, Padalia K (2022) Relationships between soil and microbial biomass properties and annual flux of nutrients in Central Himalayan forests, India. Land Degrad Dev 33(12):2014–2025. https://doi.org/10.1002/ldr.4283

    Article  Google Scholar 

  • Meena RS, Kumar S, Sheoran S, Jhariya MK, Bhatt R, Yadav GS, Gopinath KA, Srinivasa Rao C, Lal R (2021) Soil organic carbon restoration in India: programs, policies, and thrust areas. In: Lal R (ed) The soil organic matter and feeding the future. CRC Press/Taylor & Francis Groups, Oxfordshire, pp 305–338. https://doi.org/10.1201/9781003102762-13

    Chapter  Google Scholar 

  • Meena RS, Yadav A, Kumar S, Jhariya MK, Jatav SS (2022) Agriculture ecosystem models for CO2 sequestration, improving soil physicochemical properties, and restoring degraded land. Ecol Eng 176:106546. https://doi.org/10.1016/j.ecoleng.2022.106546

    Article  Google Scholar 

  • Montagnini F, Nair PKR (2012) Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 61:281–295

    Google Scholar 

  • Murthy IK, Gupta M, Tomar S, Munsi M, Tiwari R, Hegde GT, Ravindranath NH (2013) Carbon sequestration potential of agroforestry systems in India. J Earth Sci Climate Chang 4(1):1–7

    Google Scholar 

  • Nair PKR (2012) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: Nair PKR, Garrity DP (eds) Agroforestry: the future of global land use. Springer, Dordrecht, pp 31–67

    Chapter  Google Scholar 

  • Nair PKR, Nair VD (2003) Carbon storage in North American agroforestry systems. In: Kimble J, Heath LS, Birdsey RA, Lal R (eds) The potential of U.S. forest soils to sequester carbon and mitigate the green house effect. CRC Press LLC, Boca Raton, pp 333–346

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Haile SG (2009b) Soil carbon sequestration in tropical agroforestry systems: a feasibility appraisal. Environ Sci Policy 12:1099–1111

    Article  CAS  Google Scholar 

  • Nair PKR, Vimala DN, Kumar BM, Showalter JM (2011) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  Google Scholar 

  • Narain P (2008) Dryland management in arid ecosystem. J Indian Soc Soil Sci 56:337–347

    Google Scholar 

  • Newaj R, Chaturvedi OP, Handa AK (2016) Recent development in agroforestry research and its role in climate change adaptation and mitigation change adaptation and mitigation. Indian J Agrofor 18:1–9

    Google Scholar 

  • Niles JO, Brown S, Pretty J, Ball AS, Fay J (2002) Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. Philos Trans R Soc 360:1621–1639

    Article  Google Scholar 

  • Novara A, Minacapilli M, Santoro A, Rodrigo-Comino J, Carrubba A, Sarno M, Venezia G, Gristina L (2019) Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Sci Total Environ 652:300–306

    Article  PubMed  Google Scholar 

  • NRCAF (2007) Perspective plan: vision 2025. National Research Centre for Agroforestry (NCRAF), Jhansi

    Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlnvoigt AM, Thevathasan NV (2006) Carbon input, soil carbon pools, turnover and residue stabilization efficiency in tropical and temperate agroforestry systems. Agrofor Syst 68:27–36

    Article  Google Scholar 

  • Ospina C (2016) Carbon sequestration: addressing climate change and food security through sustainable agriculture, pp 1–8

    Google Scholar 

  • Pant KS, Yewale AG, Prakash P (2014) Fruit trees based agroforestry systems. In: Raj AJ, Lal SB (eds) Agroforestry theory and practices. Scientific Publishers, Jodhpur, pp 564–588

    Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling and succession in single- and mixed-species stands of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Ecol Manag 124:45–77

    Article  Google Scholar 

  • Pathak H, Saharawat YS, Gathala M, Mohanty S, Ladha JK (2009) Simulating environmental impact of resource-conserving technologies in the rice-wheat system of the Indo-Gangetic Plains. In: Ladha JK, Yadvinder-Singh, Erenstein O, Hardy B (eds) Integrated crop and resource management in the rice-wheat systemof South Asia. International Rice Research Institute, Los Banos, pp 321–334

    Google Scholar 

  • Paudela D, Tiwaria KR, Bajracharyab RM, Rautb N, Sitaulac BK (2017) Agroforestry system: an opportunity for carbon sequestration and climate change adaptation in the Mid-Hills of Nepal. Octa J Environ Res 5:10

    Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–250

    Article  Google Scholar 

  • Prasad R, Saroj NK, Newaj R, Venkatesh A, Dhyani SK, Dhanai CS (2010) Atmospheric carbon capturing potential of some agroforestry trees for mitigation of warming effect and climate change. Indian J Agrofor 12(2):37–41

    Google Scholar 

  • Prasad R, Jhariya MK, Banerjee A (2021a) Advances in sustainable development and management of environmental and natural resources: economic outlook and opinions I. CRC Press, Taylor and Francis Group, Apple Academic Press Inc., Palm Bay, FL/Oakville, ON. pp. 1–437. Hardcover ISBN:9781774910344

    Google Scholar 

  • Prasad R, Jhariya MK, Banerjee A (2021b) Advances in sustainable development and management of environmental and natural resources: economic outlook and opinions, vol II. CRC Press, Taylor and Francis Group, Apple Academic Press Inc., Palm Bay, FL/Oakville, ON, pp 1–428. Hardcover ISBN:9781774910368

    Google Scholar 

  • Rai P, Ajit CPO, Singh R, Singh UP (2009) Biomass production in multipurpose tree species in natural grasslands under semi-arid conditions. J Trop For 25:11–16

    Google Scholar 

  • Raizada A, Parandiyal AK, Ghosh BN (2003) Estimation of carbon flux through litter fall in forest plantations of India. Indian Forester 129(7):881–894

    Google Scholar 

  • Raj A, Jhariya MK (2021a) Site quality and vegetation biomass in the tropical Sal mixed deciduous forest of Central India. Landsc Ecol Eng 17(1):1–13. https://doi.org/10.1007/s11355-021-00450-1

    Article  Google Scholar 

  • Raj A, Jhariya MK (2021b) Carbon storage, flux and mitigation potential of tropical Sal mixed deciduous forest ecosystem in Chhattisgarh, India. J Environ Manag 293:112829. https://doi.org/10.1016/j.jenvman.2021.112829

    Article  CAS  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019a) Agroforestry: a holistic approach for agricultural sustainability, pp 101–131. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, Forest and environmental management. Springer Nature, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1. eISBN:978-981-13-6830-1, Hardcover ISBN:978-981-13-6829-5

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019b) Soil for sustainable environment and ecosystems management, pp 189–221. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer Nature, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1. eISBN:978-981-13-6830-1, Hardcover ISBN:978-981-13-6829-5

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020a) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press Inc., CRC Press, Tayler and Francis Group, Palm Bay, FL/Oakville, ON, p 383. https://doi.org/10.1201/9780429286759. ISBN:9781771888226

    Book  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020b) Forest for resource management and environmental protection. In: Banerjee A, Jhariya MK, Yadav DK, Raj A (eds) Environmental and sustainable development through forestry and other resources. AAP, CRC Press, Toronto, pp 1–24

    Google Scholar 

  • Raj A, Jhariya MK, Khan N (2022) Forest for soil, food and climate security in Asia. In: Öztürk M, Khan SM, Altay V, Efe R, Egamberdieva D, Khassanov FO (eds) Biodiversity, conservation and sustainability in Asia, vol. 2; South and Middle Asia. Springer, pp 33–52. https://doi.org/10.1007/978-3-030-73943-0_3

    Chapter  Google Scholar 

  • Rajput BS, Bhardwaj DR, Nazir AP (2017) Factors influencing biomass and carbon storage potential of different land use systems along an elevational gradient in temperate northwestern Himalaya. Agrofor Syst 91:479–486

    Article  Google Scholar 

  • Rao MR, Ong CK, Pathak P, Sharma MM (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India. Agrofor Syst 15:51–63

    Article  Google Scholar 

  • Rhoades CC, Eckert GE, Coleman DC (1998) Effect of pasture trees on soil nitrogen and organic matter: implications for tropical montane forest restoration. Restor Ecol 6(3):262–270

    Article  Google Scholar 

  • Rizvi RH, Dhyani SK, Newaj R, Karmakar PS, Saxena A (2014) Mapping agroforestry area in India through remote sensing and preliminary estimates. Indian Farm 63(11):62–64

    Google Scholar 

  • Roy A (2011) Requirement of vegetables and fruit. The Daily Star (A English Newspaper), 24 Mar 2011

    Google Scholar 

  • Roy O, Meena RS, Kumar S, Jhariya MK, Pradhan G (2022) Assessment of land use systems for CO2 sequestration, carbon credit potential and income security in Vindhyan region, India. Land Degrad Dev 33(4):670–682. https://doi.org/10.1002/ldr.4181

    Article  Google Scholar 

  • Ruiz A, Ibrahim M, Locatelli B, Andrade HJ, Beer J (2004) Fijación y almacenamiento de carbonoensistemassilvopastoriles y competitividadeconómica de fincasganaderasenMatiguás, Nicaragua. Agrofor Am 41–42:16–21

    Google Scholar 

  • Runyon J, Waring RH, Goward SN, Welles JM (1994) Environmental limits on net primary production and light-use efficiency across the Oregon transect. Ecol Appl 4:226–237

    Article  Google Scholar 

  • Saha S, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stocks in relation to plant diversity of home gardens in Kerala, India. Agrofor Syst 76:53–65

    Article  Google Scholar 

  • Samal B, Singh L, Jhariya MK (2022) Carbon storage, mitigation and sequestration potential of Haldina cordifolia and Mitragyna parvifolia in tropical dry deciduous environment of Chhattisgarh, India. Ecol Eng 175:106490. https://doi.org/10.1016/j.ecoleng.2021.106490

    Article  Google Scholar 

  • Sanz MJ et al (2017) Sustainable land management contribution to successful land-based climate change adaptation and mitigation. A report of the science–policy interface. A report of the science–policy interface. United Nations Convention to Combat Desertification (UNCCD), Bonn, 178 pp

    Google Scholar 

  • Sarvade S, Gautam DS, Upadhyay VB, Sahu RK, Shrivastava AK, Kaushal R, Singh R, Yewale AG (2019) Agroforestry and soil health: an overview. In: Dev I, Ram A, Kumar N, Singh R, Kumar D, Uthappa AR, Handa AK, Chaturvedi OP (eds) Agroforestry for climate resilience and rural livelihood. Scientific Publishers, Jodhpur, pp 275–297

    Google Scholar 

  • Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Sarvesh S (2011) Variation in carbon stocks on different slope aspects in seven major types of temperate region of Garhwal Himalaya, India. J Biol Sci 36(4):701–708

    CAS  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Sheikh MA, Kumar M, Todaria NP (2015) Carbon sequestration potential of nitrogen fixing tree stands. For Stud Metsanduslikud Uurimused 62:39–47

    Article  Google Scholar 

  • Shi L, Feng W, Xu J, Kuzyakov Y (2018) Agroforestry systems: meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad Dev 29(11):3886–3897. https://doi.org/10.1002/ldr.3136

    Article  Google Scholar 

  • Shinde SM, Turkhade PD, Deshmukh SB, Narkhede GW (2015) Carbon sequestration potential of some fruit trees in Satara district of Maharashtra India. Ecol Environ ConservEco Env & Cons 21(1):359–362

    Google Scholar 

  • Shrestha G, Malla G (2016) Estimation of atmospheric carbon sequestration by fruit plants in mid-western terai region, Nepal. Nepal J Agric Sci 14:211–215

    Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145. isbn:978-81-7622-375-1

    Google Scholar 

  • Singh HP, Malhotra SK (2011) Horticulture for food, nutrition and healthcare- a new paradigm. Indian Hortic 56(2):3–11

    Google Scholar 

  • Singh B, Singh G (2015) Biomass production and carbon stock in a silvi-horti based agroforestry system in arid region of Rajasthan. Indian Forester 141(12):1237–1243

    Google Scholar 

  • Sreejesh KK, Thomas TP, Rugmini P, Prasanth KM, Kripa PA (2013) Carbon sequestration potential of Teak (Tectona grandis) plantations in Kerala. Res J Recent Sci 2:167–170

    CAS  Google Scholar 

  • Sun Y, Cao F, Wei X, Welham C, Chen L, Pelz D, Yang Q, Liu H (2017) An ecologically based system for sustainable agroforestry in sub-tropical and tropical forests. Forests 8(4):102

    Article  Google Scholar 

  • Swamy SL, Puri S (2005) Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agrofor Syst 64:181–195

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Thakrey M, Singh L, Jhariya MK, Tomar A, Singh AK, Toppo S (2022) Impact of disturbance on biomass, carbon, nitrogen storage in vegetation and soil properties in tropical dry deciduous forest in Chhattisgarh, India. Land Degrad Dev 33(11):1–11. https://doi.org/10.1002/ldr.4263

    Article  Google Scholar 

  • The World Bank Report (2012) Carbon sequestration in agricultural soils. https://openknowledge.worldbank.org/bitstream/handle/10986/11868/673950REVISED000CarbonSeq0Web0final.pdf?sequence=1&isAllowed=y

  • Tonucci RG, Nair PKR, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land-use systems in the Brazilian cerrado. J Environ Qual 40(3):833–841. https://doi.org/10.2134/jeq2010.0162

    Article  CAS  PubMed  Google Scholar 

  • Trexler MC, Haugen C (1994) Keeping it green: tropical forestry opportunities for mitigating climate change. World Resource Institute, Washington, DC

    Google Scholar 

  • Verchot LV, Dutaur L, Shepherd KD, Albrecht A (2011) Organic matter stabilization in soil aggregates: understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 16:182–193

    Article  Google Scholar 

  • Viswanath S, Peddappaiah RS, Subramoniam V, Manivachakam P, George M (2004) Management of Casuarina equisetifolia in wide-row intercropping systems for enhanced productivity. Indian J Agrofor 6(2):19–25

    Google Scholar 

  • Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N (2017) Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10:1–6. https://doi.org/10.1177/1940082917720667

    Article  Google Scholar 

  • Wang Q, Li Y, Alva A (2010) Cropping systems to improve carbon sequestration for mitigation of climate change. J Environ Prot 1:207–215

    Article  Google Scholar 

  • White RA III, Rivas-Ubach A, Borkum MI, Köberl M, Bilbao A, Colby SM, Hoyt DW, Bingol K, Kim YM, Wendler JP (2017) The state of rhizospheric science in the era of multi-omics: a practical guide to omics technologies. Rhizosphere 3:212–221

    Article  Google Scholar 

  • Yadav RP, Bisht JK, Pandey BM (2015) Above ground biomass and carbon stock of fruit tree based land use systems in Indian Himalaya. Ecoscan 9(3&4):779–783

    CAS  Google Scholar 

  • Yadav VS, Gupta SR, Yadav SS, Meena RS, Lal R, Sheoran NS, Jhariya MK (2022) Carbon sequestration potential and CO2 fluxes in a tropical forest ecosystem. Ecol Eng 176:106541. https://doi.org/10.1016/j.ecoleng.2022.106541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, A., Jhariya, M.K. (2023). Carbon Sequestration in Agroforestry and Horticulture Based Farming Systems: Mitigating Climate Change and Advancing Food and Nutrition Security. In: Ghosh, S., Kumari Panda, A., Jung, C., Singh Bisht, S. (eds) Emerging Solutions in Sustainable Food and Nutrition Security. Springer, Cham. https://doi.org/10.1007/978-3-031-40908-0_7

Download citation

Publish with us

Policies and ethics