Skip to main content

Intracorporeal Lithotripsy Devices for PCNL

  • Chapter
  • First Online:
Percutaneous Renal Surgery

Abstract

“Intracorporeal lithotripsy” literally means “fragmentation of stones occurring within the body”. Intracorporeal lithotripsy devices for percutaneous nephrolithotomy (PCNL) vary in terms of energy source, mechanism of action, probe features, comminution potential, stone retropulsion, side effects on surrounding tissues, versatility of use, and costs. The choice of the best intracorporeal lithotripter in terms of efficacy, safety and cost-effectiveness can be tailored case by case on the features of the urolithiasis and of the collecting system containing the calculi. Referring to their mechanism of action and at the same time to their order of appearance in the clinical practice, intracorporeal lithotripters for PCNL can be classified into electrohydraulic, ultrasonic, ballistic, combination, and laser devices. More than ten years ago standard PCNL resorted to ballistic, ultrasonic, and combined ballistic/ultrasonic lithotripsy most of the times. Nowadays, considering the current trend towards miniaturization and flexible endoscopy, intracorporeal lithotripters with suction and thinner probes as well as different lasers are used more and more, while electrohydraulic technology has largely been discontinued. History, mechanism of action, technique of lithotripsy, pros and cons, and future developments of each intracorporeal lithotripter for PCNL are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alken P. Intracorporeal lithotripsy. Urolithiasis. 2018;46:19–29.

    Article  CAS  PubMed  Google Scholar 

  • Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A, Vybornov A, Rapoport L, et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol. 2020;38(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  • Axelsson TA, Cracco C, Desai M, Hasan MN, Knoll T, Montanari E, et al. Consultation on kidney stones, Copenhagen 2019: lithotripsy in percutaneous nephrolithotomy. World J Urol. 2021;39(6):1663–70.

    Article  PubMed  Google Scholar 

  • Castellani D, Corrales M, Lim EJ, Cracco C, Scoffone CM, Teoh JY, et al. The impact of lasers in percutaneous nephrolithotomy outcomes: results from a systematic review and meta-analysis of randomized comparative trials. J Endourol. 2022;36(2):151–7.

    Article  PubMed  Google Scholar 

  • Denstedt JD. Use of Swiss Lithoclast for percutaneous nephrolithotripsy. J Endourol. 1993;7(6):477–80.

    Article  CAS  PubMed  Google Scholar 

  • Drozdov AN, Narozhnyy IM, Pak DX, Ludupov VB, Zamlianslii GS. Electrohydraulic effect as an example of electrophysical technologies application in the oil industry. IOP Conf Ser Mater Sci Eng. 2019;675: 012024.

    Article  CAS  Google Scholar 

  • Feng D, Zeng X, Han P, Wei X. Comparison of intrarenal pelvic pressure and postoperative fever between standard- and mini-tract percutaneous nephrolithotomy: a systematic review and meta-analysis of randomized controlled trials. Transl Androl Urol. 2020;9(3):1159–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fried NM, Irby PB. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev. 2018;15:563–73.

    Google Scholar 

  • Grocela JA, Dretler SP (1997) Intracorporeal lithotripsy. Instrumentation and development. Urol Clin North Am. 1997;24(1):13–23.

    Google Scholar 

  • Gutiérrez J, Alvarez UM, Mues E, Fernandez F, Gomez G, Loske AM. Inactivation of bacteria inoculated inside urinary stone-phantoms using intracorporeal lithotripters. Urol Res. 2008;36:67–72.

    Article  PubMed  Google Scholar 

  • Hardy LA, Kennedy JD, Wilson CR, Irby PB, Fried NM. Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. J Biophotonics. 2017;10(10):1240–9.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann R, Olbert P, Weber J, Wille S, Varga Z. Clinical experience with a new ultrasonic and LithoClast combination for percutaneous litholapaxy. BJU Int. 2002;90(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  • Keeley FX Jr, Pillai M, Smith G, Chrisofos M, Tolley DA. Electrokinetic lithotripsy: safety, efficacy, and limitations of a new form of ballistic lithotripsy. BJU Int. 1999;84(3):261–3.

    Article  PubMed  Google Scholar 

  • Klein E. Some background history of ultrasonics. J Acoust Soc Am. 1948;20(5):601–4.

    Article  Google Scholar 

  • Kraft L, Petzold R, Suarez-Ibarrola R, Miernik A. In vitro fragmentation performance of a novel, pulsed Thulium solid-state laser compared to a Thulium fibre laser and standard Ho:YAG laser. Lasers Med Sci. 2022;37(3):2071–8.

    Article  PubMed  Google Scholar 

  • Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laser - a systematic review. Transl Androl Urol. 2019;8(Suppl 4):S398–417.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liatsikos EN, Dinlenc CZ, Fogarty JD, Kapoor R, Bernardo NO, Smith AD. Efficiency and efficacy of different intracorporeal ultrasonic lithotripsy units on a synthetic stone model. J Endourol. 2001;15:925–8.

    Article  CAS  PubMed  Google Scholar 

  • Mykoniatis I, Pyrgidis N, Tzelves L, Pietropaolo A, Juliebø-Jones P, De Coninck V, et al. Assessment of single-probe dual-energy lithotripters in percutaneous nephrolithotomy: a systematic review and meta-analysis of preclinical and clinical studies. World J Urol. 2023;41(2):551–65.

    Article  PubMed  Google Scholar 

  • Patel NH, Schulman AA, Bloom JB, Uppaluri N, Phillips JL, Konno S, et al. Device-related adverse events during percutaneous nephrolithotomy: review of the manufacturer and user facility device experience database. J Endourol. 2017;31(10):1007–11.

    Article  PubMed  Google Scholar 

  • Sánchez-Puy A, Bravo-Balado A, Diana P, Baboudjian M, Piana A, Girón I, et al. Generation pulse modulation in holmium:YAG lasers: a systematic review of the literature and meta-analysis. J Clin Med. 2022;11(11):3208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scotland KB, Kroczak T, Pace KT, Chew BH. Stone technology: intracorporeal lithotripters. World J Urol. 2017;35:1347–51.

    Article  PubMed  Google Scholar 

  • Tailly T, Denstedt J. Innovations in percutaneous nephrolithotomy. Int J Surg. 2016;36:665–72.

    Article  PubMed  Google Scholar 

  • Taratkin M, Laukhtina E, Singla N, Tarasov A, Alekseeva T, Enikeev M, Enikeev D. How lasers ablate stones: in vitro study of laser lithotripsy (Ho:YAG and Tm-fiber lasers) in different environments. J Endourol. 2021;35(6):931–6.

    Article  PubMed  Google Scholar 

  • Tominaga K, Inoue T, Yamamichi F, Fujita M, Fujisawa M. Impact of vacuum-assisted mini-endoscopic combined intrarenal surgery for staghorn stones: analysis of perioperative factors of postoperative fever and stone-free status. J Endourol. 2023;37(4):400–6.

    Article  PubMed  Google Scholar 

  • Zheng W, Denstedt JD (2000) Intracorporeal lithotripsy. Update on technology. Urol Clin North Am. 2000;27(2):301–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Marco Scoffone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scoffone, C.M., Cracco, C.M. (2023). Intracorporeal Lithotripsy Devices for PCNL. In: Denstedt, J.D., Liatsikos, E.N. (eds) Percutaneous Renal Surgery. Springer, Cham. https://doi.org/10.1007/978-3-031-40542-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40542-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40541-9

  • Online ISBN: 978-3-031-40542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics