Skip to main content

Wastewater into a Resource: Biofertilizers

  • Chapter
  • First Online:
Wastewater Resource Recovery and Biological Methods

Part of the book series: Springer Water ((SPWA))

  • 171 Accesses

Abstract

Rapid urbanization, over-population, and industrialization induce rise in freshwater scarcity considerably and are responsible for the generation of wastewater in larger amounts. Disposal of untreated wastewater causes eutrophication, and water pollution, disturbing the aquatic ecosystem beyond repair. On the other hand, growing global food demand increases the usage of chemical fertilizers. Although chemical fertilizer enhances plant growth, development, and productivity efficiently, it degrades the soil quality and nutritional food value, destroys soilbiota thus becomes a life-threatening factor. The adverse effects of these have lead to the search for cost-efficient, eco-friendly alternative options. The generation of biofertilizer from wastewater is a promising approach that can be used as a replacement for “chemical fertilizer” for wastewater disposal and also helps to mitigate eutrophication, improve soil quality and give a future roadmap for better possibilities for environmental sustainability. Proper treatments, can turn wastewater into a resource to alleviate water scarcity and for the betterment of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd El-Fattah DA, Ewedab WE, Zayed MS, Hassaneina MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacterchroococcum inoculants. Ann Agric Sci 58:111–118

    Article  Google Scholar 

  • Abdel-Raouf N, Al-Homaidan A, Ibraheem I (2012) Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19:257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal G, Rakwal R, Sarkar A (2014) Do you care to manage your waste: it’s high time to voice towards a sustainable waste management system worldwide. International Journal of Life Sciences 8

    Google Scholar 

  • Ahmad M, Nadeem SM, Naveed S, Zahir ZA (2016) Potassium solubilizing bacteria and their role in agriculture. Potassium solubilizing microorganisms for sustainable agriculture, pp 293–313

    Google Scholar 

  • Ahmed J, Thakur A, Goyal A (2021a) Industrial wastewater and its toxic effects. In: Biological treatment of industrial wastewater, pp 1–14

    Google Scholar 

  • Ahmed MA, Mahrous YMA, Sabry AH, Assem MA, El G, Mamdouh AE (2021b) Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J Plant Nutr 44:411–420

    Article  Google Scholar 

  • Ali MI (2005) Struvite crystallization from nutrient rich wastewater. James Cook University, Townsville, Australia, School of Engineering

    Google Scholar 

  • Asano T, Burton FL, Leverenz HL, Tsuchihashi R, Tchobanoglous G (2007) Water reuse: issues, technologies, and applications. McGraw-Hill, New York

    Google Scholar 

  • Avila JS, Ferreira JS, Santos JS, Rocha PAD, Baldani VL (2020) Green manure, seed inoculation with Herbaspirillumseropedicae and nitrogen fertilization on maize yield. Rev Bras Eng Agricola Ambient 24:590–595

    Article  Google Scholar 

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65(14):3799–3811

    Article  PubMed  Google Scholar 

  • Baliah NT (2018) Phosphate solubilizing bacteria (PSB) a novel PGPR for sustainable agriculture. International Journal in Innovative Research in Science, Engineering and Technology 7:4

    Google Scholar 

  • Bani R (2011) Wastewater management. Waste Water: Evaluation and Management 379

    Google Scholar 

  • Banik A, Dangar TK (2019) Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain AviZ (MCC 3432) can increase rice yield under green house and field condition. Microbiol Res 219:56–65

    Article  CAS  PubMed  Google Scholar 

  • Bano S, Iqbal SM (2016) Biological nitrogen fixation to improve plant growth and productivity. International Journal of Agriculture Innovations and Research 4:597–599

    Google Scholar 

  • Bhatt K, Maheshwari DK (2020) Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech 10(2), 36

    Google Scholar 

  • Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH (2011) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res 45(18):5925–5933

    Article  CAS  PubMed  Google Scholar 

  • Boraste A, Vamsi KK, Jhadav A, Khairnar Y, Gupta N, Trivedi S, Patil P, Gupta G, Gupta M, Mujapara AK, Joshi B (2009) Biofertilizers: a novel tool for agriculture. International Journal of Microbiology Research 2:23–31

    Google Scholar 

  • Boretti A, Rosa L (2019) Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15

    Google Scholar 

  • Brar SK, Sarma SJ, Chaaboun E (2012) Shelf-life of biofertilizers: an accord between formulations and genetics. J Biofertilizers Biopestic 3:1–3

    Google Scholar 

  • Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobiummeliloti 1021. Proteomics 10:1861–1874

    Article  CAS  Google Scholar 

  • Daniel Y, Tariku A (2019) Components, mechanisms of action, success under greenhouse and field condition, market availability, formulation and inoculants development on biofertilizer. Biomedical Journal of Scientific & Technical Research, 12, 4. BJSTR. MS.ID.002279

    Google Scholar 

  • Das P, Abdul Quadir M, Thaher MI, Alghasal GSHS, Aljabri HMSJ (2018) Microalgal nutrients recycling from the primary effluent of municipal wastewater and use of the produced biomass as biofertilizer. Int J Environ Sci Technol 16:3355–3364

    Article  Google Scholar 

  • Das P, Khan S, Chaudhury AK, Abdul Qadir M, Thaher MI, Al-Jabri H (2019) Potential application of algal based biofertilizer. In: Biofertilizers for sustainable agriculture and environment, pp 41–65

    Google Scholar 

  • Dasgupta D, Kumar K, Miglani R, Mishra R, Panda AK, Bisht SS (2021) Microbial fertilizers: recent trends and future outlook. Recent Advancement in Microbial Technology 1–26

    Google Scholar 

  • Debnath S, Rawat D, Kumar Mukherjee A, Adhikary S, Kundu R (2019) Applications and constraints of plant beneficial microorganisms in agriculture, biostimulants. Plant Science; Mirmajlessi SM, Radhakrishnan R (eds), IntechOpen, pp 1–25

    Google Scholar 

  • Decrey L, Udert KM, Tilley E, Pecson BM, Kohn T (2011) Fate of the pathogen indicators phage Phi X174 and Ascaris suum eggs during the production of struvite fertilizer from source-separated urine. Water Res 45:4960

    Article  CAS  PubMed  Google Scholar 

  • Dey A (2021) Liquid biofertilizers and their applications: an overview. Environmental and Agricultural Microbiology: Application for Sustainability 2:275–292

    Article  Google Scholar 

  • Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522

    Article  CAS  PubMed  Google Scholar 

  • EPA (1976) Development document for interim final effluent limitations guidelines and proposed new source performance standards for the oil and gas extraction point source category

    Google Scholar 

  • EPA (1982) Development document for the coal mining category

    Google Scholar 

  • EPA (2002) Development document for final effluent limitations guidelines and standards for the iron and steel manufacturing point source category (report) 7–1ff

    Google Scholar 

  • EPA (2015) Effluent limitations guidelines and standards for the steam electric power generating point source category

    Google Scholar 

  • EPA (2017) Battery manufacturing effluent guidelines

    Google Scholar 

  • EPA (2018) Dairy products processing effluent guidelines

    Google Scholar 

  • Esteban AV, Martinez-Hidalgo P, Hirsch AM (2017) Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology 3:689–705

    Article  Google Scholar 

  • Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects—a review. J Soil Sci Plant Nutr 17(4):897–911

    Article  CAS  Google Scholar 

  • Evans AE, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A (2019) Agricultural water pollution: key knowledge gaps and research needs. Curr Opin Environ Sustainability 36:20–27

    Article  Google Scholar 

  • Falkenmark M, Rockstrom J, Karlberg L (2009) Present and future water requirements for feeding humanity. Food Secur 1(1):59–69

    Article  Google Scholar 

  • Fernandez FGA, Gomez-Serrano C, Fernandez-Sevilla JM (2018) Recovery of nutrients from wastewaters using microalgae. Front Sustain Food Syst

    Google Scholar 

  • Fox A, Kwapinski W, Griffiths BS, Schmalenberger A (2014) The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Loliumperenne. FEMS Microbiol Ecol 90(1):78–91

    Article  CAS  PubMed  Google Scholar 

  • Fraunhofer-Gesellschaft (2012) Using wastewater as fertilizer. Science Daily

    Google Scholar 

  • Fuentes A, Llorens M, Saez J, Isabel Aguilar M, Ortuno JF, Meseguer VF (2008) Comparative study of six different sludges by sequential speciation of heavy metals. BioresourTechnol 99:517–525

    Article  CAS  Google Scholar 

  • Gaterell MR, Gay R, Wilson R, Gochin RJ, Lester JN (2000) An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertilizer markets. Environ Technol 21:1067–1084

    Article  CAS  Google Scholar 

  • George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D et al (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208

    Article  CAS  Google Scholar 

  • Ghany TMA et al (2013) Role of biofertilizers in agriculture: a brief review. Mycopath 11(2):95–101

    MathSciNet  Google Scholar 

  • Ghazy N, El-Nahrawy S (2021) Siderophore production by Bacillus subtilis MF497446 and Pseudomonas koreensis MG209738 and their efficacy in controlling Cephalosporium maydis in maize plant. Arch Microbiol 203:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Lehr VI (2019) Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep 9:9338

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncalves AL, Pires JCM, Simoes M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Gosling S, Arnell NA (2013) Global assessment of the impact of climate change on water scarcity. Climatic Change 1–15

    Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition—a review. Am J Exp Agric 3:374–391

    CAS  Google Scholar 

  • Hanapi SZ, Awad H, Sarmidi MR, Aziz R (2012) Biofertilizer: ingredients for sustainable agriculture. Biotechnology Development in Agriculture, Industry and Health 358–392

    Google Scholar 

  • Hao XD, Wang CC, Lan L (2008) Struvite formation, analytical method and effect of pH and Ca+2. Water, Science and Technology

    Google Scholar 

  • Hassan M, Hassan R, Mahmud MA et al (2017) Sewage waste water characteristics and its management in urban areas—a case study at pagla sewage treatment plant, Dhaka. UrbanReg Plan 2:13–16

    Google Scholar 

  • Hena S et al (2021) Removal of pharmaceutical and personal care products from wastewater using microalgae: a review. J Hazard Mater 403:124041

    Article  CAS  PubMed  Google Scholar 

  • Hindersah R, Rahmadina I, Harryanto R, Suryatmana P, Arifin M (2021) Bacillus and azotobacter counts in solid biofertilizer with different concentration of zeolite and liquid inoculants. IOP Conf Series: Earth and Environmental Science 667:012010

    Google Scholar 

  • Huang M, Li Y, Gu G (2010) Chemical composition of organic matter in domestic wastewater. Desalination 262(1–3):36–42

    Article  CAS  Google Scholar 

  • Jones ER, Van Vilet MTH, Qadir M, Bierkens MFP (2021) Country level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst Sci Data 13:237–254

    Article  Google Scholar 

  • Joshi SS, Shivapur AV, Karjinni VV, Patil MR, Jadhav P, Patil AM (2020) A review paper on characterization of domestic wastewater from nallah. International Research Journal of Engineering and Technology 7(5), e-2395-0056

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, London

    Google Scholar 

  • Kannapiran E, Vijayan SR (2011) Isolation of phosphate solubilizing bacteria from the sediments of Thondi coast, Palk Strait, Southeast coast of India. Annals of Biological Research

    Google Scholar 

  • Kannel PR, Lee S, Kanel SR, Khan SP, Lee YS (2007) Spatial-temporal variation and comparative assessment of water qualities of urban river system: a case study of the River Bagmati (Nepal). Environ Monitor Assess 129:433–459

    Article  CAS  Google Scholar 

  • Kashyap AS, Pandey VK, Manzar N, Kannojia P, Singh UB, Sharma PK (2017) Role of plant growth-promoting rhizobacteria for improving crop productivity in sustainable agriculture. In: Singh D, Singh H, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer, Singapore, pp 673–693

    Google Scholar 

  • Keswani C, Prakash O, Bharti N, Vílchez JI, Sansinenea E, Lally RD et al (2019) Re-addressing the biosafety issues of plant growth promoting rhizobacteria. Sci Total Environ 690:841–852

    Article  CAS  PubMed  Google Scholar 

  • Khalofah A et al (2022) The impact of NPK fertilizer on growth and accumulation in juniper trees grown on fire damaged and intact soils. PLoS ONE 17(1):e0262685

    Article  CAS  PubMed Central  Google Scholar 

  • Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203

    Article  CAS  Google Scholar 

  • Khosro M, Yousef M (2012) Bacterial biofertilizers for sustainable crop production. Journal of Agricultural and Biological Sciences 7:237–308

    Google Scholar 

  • Kumar S et al (2022) Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Science 3:100094

    Article  CAS  Google Scholar 

  • Kushwaha P, Kashyap PL, Pandiyan K, Bhardwaj AK (2020) Zinc-solubilizing microbes for sustainable crop production: current understanding, opportunities, and challenges. Phytobiomes: Current Insights and Future Vistas 281–298

    Google Scholar 

  • Lewis WM, Wurtsbaugh WA, Paerl HW (2011) Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ Sci Technol 45(24):10300–10305

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu ZR, Zhang C, Bao J, Dai X (2012) Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresour Technol 121:169–175

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Shao C, Sun H, Liu Z, Guan Y, Wu L et al (2020) Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime. Geoderma 363, 114155

    Google Scholar 

  • Liu YH, Kwag JH, Kim JH, Ra CS (2011) Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination 277:364–369

    Article  CAS  Google Scholar 

  • Mahumud AA, Upadhyay SK, Srivastava AK, Bhojiya AA (2021) Biofertilizers: a nexus between soil fertility and crop productivity under biotic stress. Current Research in Environmental Sustainability

    Google Scholar 

  • Mandal M, Sarkar M, Khan A, Biswas M, Masi A, Rakwal R, Agrawal GK, Srivastava A, Sarkar A (2022) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants–maintenance of structural individuality and functional blend. Advances in Redox Research 5:100039. https://doi.org/10.1016/j.arres.2022.100039

    Article  CAS  Google Scholar 

  • Mateo-Sagasta J, Raschid-Sally L, Thebo A (2015) Global wastewater and sludge production, treatment and use. In: Drechsel P, Qadir M, Wichelns D (eds) Wastewater: economic asset in an urbanizing world. Springer, Netherlands, pp 15–38

    Chapter  Google Scholar 

  • Mitter EK et al (2021) Rethinking crop nutrition in times of modern biology: innovative biofertilizer technologies. Front Sustain Food Syst

    Google Scholar 

  • Moniish Kumaar SA, Prasanth Babu R, Vivek P, Saravanan D (2020) Role of nitrogen fixers as biofertilizers in future perspective: a review. Research J Pharm and Tech 13(5):2459–2467

    Article  Google Scholar 

  • Mounika M, Sureja A, Shahreen Fatima M, Hiritha N, Prabhu N (2022) Production of biofertilizer from industrial wastewater by microalgal treatment. International Journal of Advanced Research in Science, Communication and Technology 2:2

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 215–243

    Chapter  Google Scholar 

  • Nguyen TTT, Le Y, Le H, Bui T (2018) Struvite formation from wastewater: affecting factors and nutrient recovery. GeoScience Engineering 64:9–13

    Article  Google Scholar 

  • Pacheco-Aguirre JA, Ruiz-Sanchez E, Ballina-Gomez HS, Alvarado-Lopez CJ (2017) Does polymer-based encapsulation enhance performance of plant growth promoting microorganisms? A meta-analysis view. Agrociencia 51:174–187

    Google Scholar 

  • Painter HA (1973) Organic compounds in solution in sewage effluents. Chem Ind 818–822

    Google Scholar 

  • Pedrero F, Kalavrouziotis I, Alarcon JJ, Koukoulakis P, Asano T (2010) Use of treated municipal wastewater in irrigated agriculture. Review of some practices in Spain and Greece. Agric Water Manag 97:1233–1241

    Article  Google Scholar 

  • Pempkowiak J, Obarska-Pempkowiak H (2002) Long-term changes in sewage sludge stored in a reed bed. The Science of the Total Environment 297:59–65

    Article  CAS  PubMed  Google Scholar 

  • Posadas P et al (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoor pilot raceways. Chem Eng J 265:239–248

    Article  CAS  Google Scholar 

  • Qadir M, Drechsel P, Jimenez Cisneros B, Kim Y, Pramanik A, Mehta P, Olaniyan O (2020) Global and regional potential of wastewater as a water, nutrient and energy source. Nat Resour Forum 44:40–51

    Article  Google Scholar 

  • Qin HP, Su Q, Khu ST, Tang N (2014) Water quality changes during rapid urbanization in the Shenzhen river catchment: an integrated view of socio-economic and infrastructure development. Sustainability 6(10):7433–7451

    Article  Google Scholar 

  • Raghothama KG (2015) Phosphorus and plant nutrition: an overview. In: Phosphorus: agriculture and the environment, pp 2992–2999

    Google Scholar 

  • Ramaswamy J et al (2022) Process optimization of struvite recovered from slaughterhouse wastewater and its fertilizing efficacy in amendment of biofertilizer. Environ Res 211:113011

    Article  CAS  PubMed  Google Scholar 

  • Ramette A, Moenne-Loccoz Y, Defago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsisbasicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    Article  CAS  PubMed  Google Scholar 

  • Ren WW, Zhong Y, Meligrana J, Anderson B, Watt WE, Chen JK, Leung HL (2003) Urbanization, land use, and water quality in Shanghai 1947–1996. Environ Int 29:649–659

    Article  CAS  PubMed  Google Scholar 

  • Renuka N, Prasanna R, Sood A, Ahluwalia AS, Bansal R, Babu S, Singh R, Shivay YS, Nain L (2015) Exploring the efficacy of wastewater grown microalgal biomass as a biofertilizer for wheat. Environ Sci Pollu Res

    Google Scholar 

  • Riaz U, Mehdi SM, Iqbal S, Khalid HI, Qadir AA, Anum W et al (2020) Bio-fertilizers: eco-friendly approach for plant and soil environment. In: Hakeem KR, Bhat RA, Qadri H (eds) Bioremediation and biotechnology: sustainable approaches to pollution degradation. Springer, Cham, pp 188–214

    Google Scholar 

  • Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues AA, Forzani MV, de Soares RS, Sibov ST, Vieira JDG (2016) Isolation and selection of plant growth-promoting bacteria associated with sugarcane. PesqAgropec Trop 46:149–158

    Google Scholar 

  • Ronga D, Biazzi E, Parati K, Caminati D, Carminati E, Tava A (2019) Microalgal biostimulants and biofertilizers in crop production. Agronomy 9:192

    Article  CAS  Google Scholar 

  • Rroco E, Kosegarten H, Harizaj F, Imani J, Mengel K (2003) The importance of soil microbial activity for the supply of iron to sorghum and rape. Eur J Agron 19:487–493

    Article  CAS  Google Scholar 

  • Rudani K, Patel V, Prajapati K (2018) The importance of plant growth—a review. International Research Journal of Natural and Applied Sciences 5

    Google Scholar 

  • Sadfi N, Cherif M, Fliss I, Boudabbous A, Antoun H (2001) Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. J Plant Pathol 83:101–117

    CAS  Google Scholar 

  • Sampathkumar P, Dineshkumar R, Rasheeq AA, Armugam A, Nambi KS (2019) Marine and microalgal extract on cultivatable crops as a considerable biofertilizer. A Review Indian J Tradit Know 18:849–854

    Google Scholar 

  • Santoyo G, Guzman-Guzman P, Parra-Cota FI, de los Santos-Villalobos S, Orozco-Mosqueda MC, Glick BR (2021) Plant growth stimulation by microbial consortia. Agronomy 11:219

    Google Scholar 

  • Sarkar A, Das S, Srivastava V, Singh P, Singh R (2018) Effect of wastewater irrigation on crop health in the Indian agricultural scenario. Emerging Trends of Plant Physiology for Sustainable Crop Production 357

    Google Scholar 

  • Sathya K, Nagarajan K, Carlin Geor Malar G et al (2022) A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources. Appl Water Sci 12:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schewe J et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250

    Article  CAS  PubMed  Google Scholar 

  • Seow TW et al (2016) Review on wastewater treatment technologies. International Journal of Applied Environmental Sciences 11(1):111–126

    Google Scholar 

  • Sewnet MT (2011) A review of recent studies on urban stromwater drainage system for urban flood management. Preprints, 2020100295

    Google Scholar 

  • Shirmohammadi E, Alikhani HA, Pourbabaei AA, Etesami H (2020) Improved phosphorus (P) uptake and yield of rainfed wheat fed with p fertilizer by drought-tolerant phosphate-solubilizing fluorescent pseudomonads strains: a field study in drylands. J Soil Sci Plant Nutr 20:2195–2211

    Article  CAS  Google Scholar 

  • Shon HK, Vigneswaran S, Kandasamy J, Cho J (2007) Characteristics of effluent organic matter in wastewater. Water and Wastewater Treatment Technologies

    Google Scholar 

  • Singh A, Kumar V (2020) Liquid biofertilizers. Soil Sci 17(2):2321–7405

    Google Scholar 

  • Singh RP, Sarkar A (2015) Waste management: challenges, threats and opportunities. ISBN: 978-1-63482-150-6

    Google Scholar 

  • Singh RP, Sarkar A, Sengupta C, Singh P, Miranda R, Leal Nunes L, de Araujo A, de Melo W (2015) Effect of utilization of organic waste as agricultural amendment on soil microbial biomass. Annual Research & Review in Biology 7(3):155–162

    Article  Google Scholar 

  • Sneha S et al (2018) Biofertilizer for crop production and soil fertility. Academia Journal of Agricultural Research 6(8):299–306

    CAS  Google Scholar 

  • Sohaib M, Zahir ZA, Khan MY, Ans M, Asghar HN, Yasin S, Al-Barakah F (2020) Comparative evaluation of different carrier-based multi-strain bacterial formulations to mitigate the salt stress in wheat. Saudi Journal of Biological Sciences 27(3):777–787

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan R, Prabhu G, Rai AK, Kumari A, Chowdhury M, Govindasamy P (2020) Biofertilizers: components of integrated Nutrient management for quality forage production, Chap. 29

    Google Scholar 

  • Srivastava V, Squartini A, Masi A, Sarkar A, Singh R (2020) Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. Sci Total Environ 766:144389

    Article  PubMed  Google Scholar 

  • Suzuki K, Tanaka Y, Kuroda K, Hanajima D, Fukumoto Y, Yasuda T, Waki M (2007) Removal and recovery of phosphorous from swine wastewater by demonstration crystallization reactor and struvite accumulation device. Bioresour Technol 98:1573–1578

    Article  CAS  PubMed  Google Scholar 

  • Symonds EM, Breitbart M (2014) Affordable enteric virus detection techniques are needed to support changing paradigms in water quality management. CLEAN—Soil. Air, Water 43:8–12

    Article  Google Scholar 

  • Talboys PJ, Heppell J, Roose T, Healey JR, Jones DJ, Withers PJA (2016) Struvite: a slow-release fertilizer for sustainable phosphorus management? Plant Soil 401:109–123

    Article  CAS  PubMed  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistaciavera L. Badami) seedlings. Turk J Agric for 34:349–359

    CAS  Google Scholar 

  • Templeton MR, Butler D (2011) Introduction to wastewater treatment. Bookboon, London

    Google Scholar 

  • Tripti KA, Kumar V, Anshumali BLB, Rajkumar M (2022) Synergism of industrial and agricultural waste as a suitable carrier material for developing potential biofertilizer for sustainable agricultural production of eggplant. Horticulturae 8:444

    Article  Google Scholar 

  • Tsegaye Z, Assefa F, Beyene D (2017) Properties and application of plant growth promoting rhizobacteria. Intern J Curr Trend Pharmacobiol Med Sci 2:30–43

    Google Scholar 

  • Umami N et al (2019) Effect of different doses of NPK fertilization on growth and productivity of Cichoriumintybus. IOP Conf Series: Earth and Environmental Science 387:012097

    Google Scholar 

  • UN WATER (2021) https://www.sdg6data.org/

  • UN WWDR (2017) https://www.unwater.org/water-facts/quality-and-wastewater/

  • Uparivong S (2012) Bioclean and liquid biofertilizers a new way to the green area. Int J of GEOMATE 2(1):144–147

    Google Scholar 

  • Vaish B, Sarkar A, Singh P, Singh PK, Sengupta C, Singh RP (2016) Prospects of biomethanation in Indian urban solid waste: stepping towards a sustainable future. In: Karthikeyan O, Heimann K, Muthu S (eds) Recycling of solid waste for biofuels and bio-chemicals. Environmental footprints and eco-design of products and processes. Springer, Singapore

    Google Scholar 

  • Verma M, Sharma S, Prasad R (2011) Advantages over carrier based liquid biofertilizers for sustainable crop production. International Society of Environmental Botanists 17:2

    Google Scholar 

  • Verma P, Agrawal N (2018) Effect of rhizobacterial strain Enterobacter cloacae strain pglo9 on potato plant growth and yield. Plant Arch 18:2528–2532

    Google Scholar 

  • Verma NP, Kuldeep UK, Yadav N (2018) Study of liquid biofertilizer as an innovative agronomic input for sustainable agriculture. Int J Pure App Bio Sci 6(1):190–194

    Google Scholar 

  • Werner D, Newton WE (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer, Dordrecht

    Book  Google Scholar 

  • WHO (2015) https://www.unwater.org/water-facts/quality-and-wastewater/

  • Win TT, Barone GD, Secundo F, Fu P (2018) Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol 14:203–211

    Article  Google Scholar 

  • WWAP: The United Nations World Water Development Report (2017) Wastewater: the untapped resource. UNESCO, Paris

    Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annual Review Plant Biology 63:153–182

    Article  CAS  Google Scholar 

  • Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y (2020) Effects of potassium level on plant growth, accumulation, and distribution of carbon and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers Plant Science

    Google Scholar 

  • Yadav RC, Sharma SK et al (2022) Modulation in biofertilizer and biofortification of wheat crop by inoculation of zinc-solubilizing bacteria. Frontiers Plant Science 13

    Google Scholar 

  • Yamashita T, Yamamoto-Ikemoto R (2014) Nitrogen and phosphorus removal from wastewater treatment plant effluent via bacterial sulfate reduction in an anoxic bioreactor packed with wood and iron. Int J Environ Res Public Health 11(9):9835–9853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin M, Ahmad K, Mussarat W, Tanveer A (2012) Bio-fertilizers, substitution of synthetic fertilizers in cereals for leveraging agriculture. Crop Environ 3:62–66

    Google Scholar 

  • Zain M, Yasmin S, Hafeez F (2019) Isolation and characterization of plant growth promoting antagonistic bacteria from cotton and sugarcane plants for suppression of phytopathogenic Fusarium species. Iran J Biotechnol 17:61–70

    Article  Google Scholar 

  • Zhang T, Jiang R, Deng Y (2016) Phosphorus recovery by struvite crystallization from livestock wastewater and reuse as fertilizer: a review. Physio-Chemical Wastewater Treatment and Waste Recovery. Intech open

    Google Scholar 

  • Zhao S, Da L, Tang Z, Fang H, Song K, Fang J (2006) Ecological consequences of rapid urban expansion: Shanghai, China. Front Ecol Environ 4:341–346

    Article  Google Scholar 

Download references

Acknowledgements

AS acknowledges the receipt of financial assistance in the form of a research project (Reference No.F.30–393/2017 (BSR), dated September 27, 2018) funded by the University Grants Commission, MHRD, Government of India. The research project helped to develop the idea and outcome of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, A., Mandal, M., Das, S., Rakwal, R., Agrawal, G.K., Sarkar, A. (2023). Wastewater into a Resource: Biofertilizers. In: Singh, P., Verma, P., Singh, R.P. (eds) Wastewater Resource Recovery and Biological Methods. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-40198-5_10

Download citation

Publish with us

Policies and ethics