Skip to main content

An Account on Links Between Finsler and Lorentz Geometries for Riemannian Geometers

  • Chapter
  • First Online:
New Trends in Geometric Analysis

Part of the book series: RSME Springer Series ((RSME,volume 10))

Abstract

Some links between Lorentz and Finsler geometries have been developed in the last years, with applications even to the Riemannian case. Our purpose is to give a brief description of them, which may serve as an introduction to recent references. As a motivating example, we start with Zermelo navigation problem, where its known Finslerian description permits a Lorentzian picture which allows for a full geometric understanding of the original problem. Then, we develop some issues including (a) the accurate description of the Lorentzian causality using Finsler elements, (b) the non-singular description of some Finsler elements (such as Kropina metrics or complete extensions of Randers ones with constant flag curvature), (c) the natural relation between the Lorentzian causal boundary and the Gromov and Busemann ones in the Finsler setting, and (d) practical applications to the propagation of waves and firefronts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These metrics are well-known in the Finsler literature since the original article [57].

  2. 2.

    Notice that, whenever \( \lambda < 0 \), h has signature \((+,-,\dots , -)\). Anyway, h is well defined as a signature changing metric on the whole M, so that it can be used to determine the admissible curves between any two points \(x_0, y_0\in M\). Comparing with \(\tilde h\) in (7) (which was defined for \(\lambda >0\)), one has \(\tilde h=h/\lambda ^2\).

  3. 3.

    See [52] for a full development of this condition.

  4. 4.

    It is worth emphasizing that this last case appears in the same footing as the others from the spacetime viewpoint. However, in the Finslerian description, it corresponds with the limit of the geodesics of F and \(F_l\) (indeed, as a limit, \(F(\dot x)=F_l(\dot x)\equiv 1\)). Moreover, x might start at the region of \(M_l\), arrive at the region of critical wind \(M_{crit}\), and come back to \(M_l\). On \(M_l\), x becomes a pregeodesic of \(\Lambda g_0+ \omega \otimes \omega \) consistent with (17) (see the case (iii) (b) in the aforementioned [23, Theorem 5.5]).

  5. 5.

    See [23, Definition 2.8 and Example 2.16] for a subtlety about smoothness applicable here.

  6. 6.

    In the sense of [55, Sect. 3.2] (thus, positive and two-homogeneous) up to the fact that it may be non-smooth on \(\partial _t\). This is not relevant here, because we are only interested in the directions of \(\mathcal {C}\) (anyway, G can be smoothen on \(\partial _t\); see [55, Theorem 5.6].)

  7. 7.

    The convention for the zero vector depends on the reference, we follow [65].

  8. 8.

    Sometimes Cauchy hypersurfaces and the initial value problem are allowed to be more general so that non-smooth data or data on degenerate hypersurfaces are permitted, but we will not go into these issues.

  9. 9.

    The natural time-orientation chosen here and in the remainder is the one such that the timelike vector \(\partial _\tau \) becomes future-pointing.

  10. 10.

    See [78] for background, especially Chap. 12 and Sects. 12.3, 12.5.

  11. 11.

    In particular, it is continuous outside the diagonal [23, Theorem 4.5] (this property does not hold for any conic Finsler metric [52, Proposition 3.9]).

  12. 12.

    Here pseudo-Finsler means that the fundamental tensor (1) is non-degenerate, and the domain is conic, not necessarily the whole TM; in particular, so are the Finsler metric F and the Lorentz-Finsler one \(F_l\).

  13. 13.

    Among the subtleties appearing here, it is worth mentioning the step causal continuity (i.e., the spacetime is causal and the causal future and past vary continuously with the point) in the ladder of spacetimes. This is more restrictive than stable causality, and it is satisfied by all the standard stationary ones, as well as whenever \(\Lambda \geq 0\); however, it is not satisfied by all the SSTK spacetimes.

  14. 14.

    Hadamard manifolds (which are complete, simply connected and with non-positive sectional curvature) become diffeomorphic to \(\mathbb R^n\) by Cartan-Hadamard theorem. Eberlein and O’Neill’s boundary becomes a topological sphere \(S^{n-1}\) located at infinity. Indeed, the Busemann functions yield a quotient in the space of rays so that each function can be regarded as a direction at infinity; then, the set of all these directions can be regarded as the sphere \(S^{n-1}\).

  15. 15.

    Notice that, for a smooth curve c in such a space, the role of its Riemannian norm \(g_R(\dot c(s),\dot c(s))\) at each s is played by the local dilatation there; moreover, notions such as geodesic or cut point have a natural sense (see [45, Chap. 1] for background).

  16. 16.

    There is a non-equivalent way to define forward (and backward) Cauchy sequences; however, it would yield the same forward Cauchy completion (see [40, Sect. 3.2.2]).

  17. 17.

    Its consistency relies on a non-symmetric version of Arzela theorem [40, Theorem 5.12].

  18. 18.

    Intuitively, it does not admit “almost closed” causal curves. A formalization of this property is that each point \(p\in M\) has a neighborhood U such that any inextendible causal curve starting at U will leave U at some point so that it will not return to U.

  19. 19.

    Noticeably, they agree in the class of globally hyperbolic spacetimes-with-timelike-boundary, see [1].

  20. 20.

    A subtlety is that the Busemann functions which can be constructed with the restriction \(F(\dot c)\leq 1\) coincide with those constructed with \(F(\dot c)< 1\).

  21. 21.

    This is not a restriction in any realistic situation (see [50, Remark 3.2]).

  22. 22.

    Note that all the usual concepts about causality can be directly translated from the Lorentzian case to the Lorentz-Finsler metrics and the more general setting of cone structures (see, for example, [55, 64]). However, due to the non-reversibility of the Finsler metrics, usually only future directions are considered.

  23. 23.

    Alternatively and more generally, we can consider \( \partial _t \) as an observer’s vector field co-moving with the medium in which the wave propagates, as suggested at the end of Sect. 2.

  24. 24.

    For simplicity, \( \mathcal {S} \) will be assumed to be a hypersurface of \( M \), although the results we present here can be generalized to any submanifold (see [50]).

  25. 25.

    Nevertheless, the results we present here directly apply to the other wavefront simply by replacing “outward” with “inward.”

  26. 26.

    Richards’ equations are equivalent to the ODE system (28) when \( \Sigma _t \) is an ellipse (see [50, Sect. 5.2]).

  27. 27.

    In its usual version, Matsumoto metrics effectively measure the travel time for a walker on a slope, favoring the downward direction (see [75]).

References

  1. Aké, L., Flores, J.L., Sánchez, M.: Structure of globally hyperbolic spacetimes-with-timelike-boundary. Rev. Mat. Iberoam. 37(1), 45–94 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alías, L.J., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes. Gen. Relativ. Gravitation 27(1), 71–84 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, H.E.: Predicting wind-driven wild land fire size and shape. Res. Pap. INT-305, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden (1983)

    Google Scholar 

  4. Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler geometry. In: Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)

    Google Scholar 

  5. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 14, 3 (2011)

    Article  MATH  Google Scholar 

  7. Bartolo, R., Caponio, E., Germinario, A.V., Sánchez, M.: Convex domains of Finsler and Riemannian manifolds. Calc. Var. Partial Differ. Equ. 40, 335–356 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, 2nd ed. Marcel Dekker, Inc., New York (1996)

    Google Scholar 

  9. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257(1), 43–50 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernal, A.N., Sánchez, M.: Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions. Lett. Math. Phys. 77(2), 183–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernal, A.N., Sánchez, M.: Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’. Classical Quantum Gravity 24(3), 745–749 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biferale, L., Bonaccorso, F., Buzzicotti, M., Clark Di Leoni, P., Gustavsson, K.: Zermelo’s problem: optimal point-to-point navigation in 2D turbulent flows using reinforcement learning. Chaos 29(10), 103138 (2019), 13 pp.

    Article  MathSciNet  Google Scholar 

  13. Biliotti, L., Javaloyes, M.A.: t-periodic light rays in conformally stationary spacetimes via Finsler geometry. Houston J. Math. 37, 127–146 (2011)

    Google Scholar 

  14. Bonnard, B., Cots, O., Wembe, B.: A Zermelo navigation problem with a vortex singularity. ESAIM Control Optim. Calc. Var. 27(suppl. S10), 37 (2021)

    Google Scholar 

  15. Bonnard, B., Cots, O., Gergaud, J., Wembe, B.: Abnormal geodesics in 2D-Zermelo navigation problems in the case of revolution and the fan shape of the small time balls. Systems Control Lett. 161, 105140 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bryson, Jr., A.E., Ho, Y.C.: Applied optimal control. Optimization, estimation, and control. Revised printing. Hemisphere Publishing Corp., Washington, distributed by Halsted Press [John Wiley & Sons, Inc.], New York (1975)

    Google Scholar 

  17. Cabello, J., Jaramillo, J.: A functional representation of almost isometries. J. Math. Annal. Appl. 445(2), 1243–1257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caponio, E., Stancarone, G.: Standard static Finsler spacetimes. Int. J. Geom. Methods Mod. Phys. 13, 1650040 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caponio, E., Stancarone, G.: On Finsler spacetimes with a timelike Killing vector field. Classical Quantum Gravity 35, 085007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caponio, E., Javaloyes, M.A., Masiello, A.: Morse theory of causal geodesics in a stationary spacetime. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 857–876 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Caponio, E., Javaloyes, M.A., Masiello, A.: On the energy functional on Finsler manifolds and applications to stationary spacetimes. Math. Ann. 351, 365–392 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Caponio, E., Javaloyes, M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler metrics of Randers type. Rev. Mat. Iberoam. 27(3), 919–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Caponio, E., Javaloyes, M.A., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes. To appear in Mem. Amer. Math. Soc. ArXiv e-prints, arXiv:1407.5494 [math.DG] (2014)

    Google Scholar 

  24. Caponio, E., Germinario, A.V., Sánchez, M.: Convex regions of stationary spacetimes and Randers spaces. Applications to lensing and asymptotic flatness. J. Geom. Anal. 26(2), 791–836 (2016)

    MATH  Google Scholar 

  25. Caponio, E., Giannoni, F., Masiello, A., Suhr, S.: Connecting and closed geodesics of a Kropina metric. Adv. Nonlin. Stud. 21, 683–695 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Holden-Day Inc., San Francisco (1967)

    MATH  Google Scholar 

  27. Cheng, J.-H., Marugame, T., Matveev, V., Montgomery, R.: Chains in CR geometry as geodesics of a Kropina metric. Adv. Math. 350, 973–999 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Choquet-Bruhat, Y.: The Cauchy problem. In: Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  29. Choquet-Bruhat, Y.: Introduction to General Relativity, Black Holes, and Cosmology. Oxford University Press, Oxford (2015)

    MATH  Google Scholar 

  30. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chrusciel, P.T., Friedrich, H. (eds.): The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Berlin (2004)

    MATH  Google Scholar 

  32. Daniilidis, A., Jaramillo, J., Venegas, F.: Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds. J. Func. Anal. 279(8), 108662 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Danilo, M., Torri, C., Pfeifer, C., Voicu, N. (eds.) Beyond Riemannian Geometry in Classical and Quantum Gravity. Special Issue of Universe (2022). ISSN 2218-1997

    Google Scholar 

  34. Dehkordi, H.R.: Applications of Randers geodesics for wildfire spread modelling. Appl. Math. Model. 106, 45–59 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dehkordi, H.R., Saa, A.: Huygens’ envelope principle in Finsler spaces and analogue gravity. Classical Quantum Gravity 36(8), 085008 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eberlein, P., O’Neill, B.: Visibility manifolds. Pacific J. Math. 46, 45–109 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fathi, A., Siconolfi, A.: On smooth time functions. Math. Proc. Camb. Philos. Soc. 152(2), 303–339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Finney, M.A.: FARSITE: Fire Area Simulator-model development and evaluation. Res. Pap. RMRS-RP-4, USDA Forest Service, Rocky Mountain Research Station, Ogden, 1998 (revised 2004)

    Google Scholar 

  39. Flores, J.L., Herrera, J., Sánchez, M.: On the final definition of the causal boundary and its relation with the conformal boundary. Adv. Theor. Math. Phys. 15, 991–1057 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Flores, J.L., Herrera, J., Sánchez, M.: Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. Mem. Amer. Math. Soc. 226, 1064 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  42. Geroch, R.P., Kronheimer, E.H., Penrose, R.: Ideal points in spacetime. Proc. Roy. Soc. Lond. A 237, 545–567 (1972)

    MATH  Google Scholar 

  43. Gibbons, G., Herdeiro, C., Warnick, C., Werner, M.: Stationary metrics and optical Zermelo-Randers-Finsler geometry. Phys. Rev. D 79, 044022 (2009)

    Article  MathSciNet  Google Scholar 

  44. Gromov, M.: Hyperbolic manifolds, groups and actions. In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, 1978). Annals of Mathematics Studies, vol. 97. Princeton University Press, Princeton (1981)

    Google Scholar 

  45. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. Progress in Mathematics, vol. 152, Birkhäuser Boston Inc., Boston (1999)

    Google Scholar 

  46. Harris, S.: Static- and stationary-complete spacetimes: algebraic and causal structures. Classical Quantum Gravity 32, 135026 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Herrera, J., Javaloyes, M.A.: Stationary-complete spacetimes with non-standard splittings and pre-Randers metrics. J. Geom. Phys. 163, 104120 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Javaloyes, M.A., Lichtenfelz, L., Piccione, P.: Almost isometries of non-reversible metrics with applications to stationary spacetimes. J. Geom. Phys. 89, 38–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Javaloyes, M.A., Pendás-Recondo, E.: Lightlike hypersurfaces and time-minimizing geodesics in cone structures. In: A.L. Albujer et al. (eds.), Developments in Lorentzian Geometry, Springer Proceedings in Mathematics & Statistics, vol. 389. Springer Nature Switzerland AG, Cham (2022)

    Google Scholar 

  50. Javaloyes, M.A., Pendás-Recondo, E., Sánchez, M.: Applications of cone structures to the anisotropic rheonomic Huygens’ principle. Nonlin. Anal. 209, 112337 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Javaloyes, M.A., Pendás-Recondo, E., Sánchez, M.: A general model for wildfire propagation with wind and slope. SIAM J. Appl. Algebra Geom. 7(2), 414–439 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  52. Javaloyes, M.A., Sánchez, M.: On the definition and examples of Finsler metrics. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(3), 813–858 (2014)

    Google Scholar 

  53. Javaloyes, M.A., Sánchez. M.: Some criteria for wind Riemannian completeness and existence of Cauchy hypersurfaces. In: Lorentzian Geometry and Related Topics, Springer Proceedings in Mathematics & Statistics, vol. 211. Springer, Cham (2017)

    Google Scholar 

  54. Javaloyes, M.A., Sánchez, M.: Wind Riemannian spaceforms and Randers-Kropina metrics of constant flag curvature. Eur. J. Math. 3, 1225–1244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. Javaloyes, M.A., Sánchez, M.: On the definition and examples of cones and Finsler spacetimes. RACSAM 114, 30 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. Javaloyes, M.A., Vitório, H.: Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind. Houston J. Math. 44(4), 1147–1179 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Kropina, V.K.: Projective two-dimensional Finsler spaces with special metric (Russian). Trudy Sem. Vektor. Tenzor. Anal. 11, 277–292 (1961)

    MathSciNet  Google Scholar 

  58. Levi-Civita, T.: The Absolute Differential Calculus. Blackie & Son Limited, London and Glasgow (1927)

    Google Scholar 

  59. Levi-Civita, T.: Über Zermelo’s Luftfahrtproblem. Z. Angew. Math. Mech. 11, 314–322 (1931)

    Article  MATH  Google Scholar 

  60. Manià, B.: Sopra un problema di navigazione di Zermelo. Math. Ann. 113, 584–599 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  61. Markvorsen, S.: A Finsler geodesic spray paradigm for wildfire spread modelling. Nonlin. Anal. RWA 28, 208–228 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Markvorsen, S.: Geodesic sprays and frozen metrics in rheonomic Lagrange manifolds. ArXiv e-prints, arXiv:1708.07350 [math.DG] (2017)

    Google Scholar 

  63. Matveev, V.S.: Can we make a Finsler metric complete by a trivial projective change? In: Recent Trends in Lorentzian geometry, Springer Proceedings in Mathematics & Statistics, vol. 26. Springer, New York (2013)

    Google Scholar 

  64. Minguzzi, E.: Causality theory for closed cone structures with applications. Rev. Math. Phys. 31(5), 1930001 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. Recent Developments in Pseudo-Riemannian Geometry. ESI Lect. Math. Phys., pp. 299–358. Eur. Math. Soc., Zürich, (2008)

    Google Scholar 

  66. Natário, J.: An Introduction to Mathematical Relativity. Latin American Mathematics Series. Springer, Cham (2021)

    Google Scholar 

  67. O’Neill, B.: Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103. Academic Press, Inc., New York (1983)

    Google Scholar 

  68. Penrose, R.: Conformal treatment of infinity. In: Relativité, Groupes et Topologie (Lectures, Les Houches, 1963 Summer School of Theoret. Phys., Univ. Grenoble), Gordon and Breach, New York, 1964. Reprinted in: Gen. Relativity Gravitation 43, 901–922 (2011)

    Article  Google Scholar 

  69. Perlick, V.: Fermat principle in Finsler spacetimes. Gen. Relativity Gravitation 38(2), 365–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. Perlick, V. (ed.) Finsler Modification of Classical General Relativity. Special Issue of Universe (2020). ISSN 2218-1997

    Google Scholar 

  71. Richards, G.D.: Elliptical growth model of forest fire fronts and its numerical solution. Int. J. Numer. Methods Engrg. 30(6), 1163–1179 (1990)

    Article  MATH  Google Scholar 

  72. Ringström, H.: The Cauchy Problem in General Relativity. ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich (2009)

    Google Scholar 

  73. Serres, U.: On Zermelo-like problems: Gauss-Bonnet inequality and E. Hopf theorem. J. Dyn. Control Syst. 15(1), 99–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. Shen, Z.: Finsler metrics with \(\mathbf K=0\) and \(\mathbf S=0\). Canad. J. Math. 55, 112–132 (2003)

    Google Scholar 

  75. Shimada, H., Sabau, S.V.: Introduction to Matsumoto metric. Nonlin. Anal. 63, 165–168 (2005)

    Article  MATH  Google Scholar 

  76. Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model. Inf. Rep. NOR-X-417, Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton (2010)

    Google Scholar 

  77. von Mises, R.: Zum Navigationsproblem der Luftfahrt. Z. Angew. Math. Mech. 11, 373–381 (1931)

    Article  MATH  Google Scholar 

  78. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  79. Weyl, H.: Zur gravitationstheorie. Ann. Phys. 54, 117–145 (1917)

    Article  MATH  Google Scholar 

  80. Yoshikawa, R., Sabau, S.V.: Kropina metrics and Zermelo navigation on Riemannian manifolds. Geom. Dedicata 171, 119–148 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zaustinsky, E.M.: Spaces with non-symmetric distance. Mem. Am. Math. Soc. 34, 1–91 (1959)

    MathSciNet  MATH  Google Scholar 

  82. Zermelo, E.: Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11, 114–124 (1931)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

MAJ and EPR were partially supported by the projects PGC2018-097046-B-I00 and PID2021-124157NB-I00, funded by MCIN/AEI/10.13039/501100011033/ “ERDF A way of making Europe” and also by Ayudas a proyectos para el desarrollo de investigación científica y técnica por grupos competitivos (Comunidad Autónoma de la Región de Murcia), included in the Programa Regional de Fomento de la Investigación Científica y Técnica (Plan de Actuación 2022) of the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, REF. 21899/PI/22. EPR and MS were partially supported by the project PID2020-116126GB-I00 funded by MCIN/AEI/10.13039/501100011033 and P20-01391 (PAIDI 2020, Junta de Andalucía), as well as the framework IMAG-María de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033. EPR was also supported by Ayudas para la Formación de Profesorado Universitario (FPU) from the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Pendás-Recondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Javaloyes, M.Á., Pendás-Recondo, E., Sánchez, M. (2023). An Account on Links Between Finsler and Lorentz Geometries for Riemannian Geometers. In: Alarcón, A., Palmer, V., Rosales, C. (eds) New Trends in Geometric Analysis. RSME Springer Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-031-39916-9_10

Download citation

Publish with us

Policies and ethics