Skip to main content

The Global Study of Riemannian-Finsler Geometry

  • Chapter
  • First Online:
Geometry in History

Abstract

The aim of this article is to present a comparative review of Riemannian and Finsler geometry. The structures of cut and conjugate loci on Riemannian manifolds have been discussed by many geometers including H. Busemann, M. Berger and W. Klingenberg. The key point in the study of Finsler manifolds is the non-symmetric property of its distance functions. We discuss fundamental results on the cut and conjugate loci of Finsler manifolds and note the differences between Riemannian and Finsler manifolds in these respects. The topological and differential structures on Riemannian manifolds, in the presence of convex functions, has been an active field of research in the second half of twentieth century. We discuss some results on Riemannian manifolds with convex functions and their recently proved analogues in the field of Finsler manifolds.

To the Memory of Marcel Berger

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geometry, 200, Graduate Texts in Math. Springer-Verlag, New York, 2000.

    Book  Google Scholar 

  2. M. Berger, Sur les variétés a courbure positive de diamètre minimum, Comment. Math. Helv., 35, (1961), 28–34.

    Article  MathSciNet  Google Scholar 

  3. M. Berger, Sur quelques variétés riemannienne \(\frac {1}{4}\)-pincèes, Bull. Soc. Math. France, 88, (1960), 57–71.

    Google Scholar 

  4. A. Besse, Manifolds all of whose geodesics are closed, Springer, Berlin (1978).

    Book  Google Scholar 

  5. U. Burago and D. Zalgallar, Convex set in Riemannian spaces of non-negative curvature, Russian Mathematical Surveys, 32:3 (1977), 1–57 (Uspehki Mat. Nauk 32:3 (1977), 3–55.)

    Google Scholar 

  6. H. Busemann, Recent Synthetic Differential Geometry, Springer-Verlag, (1970).

    Book  Google Scholar 

  7. H. Busemann, Selected works, 2 volumes, (ed. A. Papadopoulos), Springer Verlag, 2018.

    Google Scholar 

  8. H. Busemann, The Geometry of Geodesics, Pure and Applied Mathematics, VI, Academic Press Inc. New York, 1955.

    Google Scholar 

  9. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, AMS Chelsia Publ. Amer. Math. Soc. Provdence, Rhode Island, 2008.

    MATH  Google Scholar 

  10. J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature. Ann. of Math.96, 413–443 (1972).

    Article  MathSciNet  Google Scholar 

  11. S.S. Chern, Finsler Geometry is just Riemannian Geometry without the Quadratic Restrictions, Notices of the AMS, (1996), 959–963.

    Google Scholar 

  12. S.S. Chern, W.H. Chen and K.S. Lam, Lectures on Differential Geometry, 2005.

    Google Scholar 

  13. R. Greene and K. Shiohama, Convex functions on complete noncompact manifolds: Differentiable structure, Ann. Scient. Ëc. Norm. Sup.14, 357–367 (1981).

    Article  MathSciNet  Google Scholar 

  14. R. Greene and K. Shiohama, Convex functions on complete noncompact manifolds; Topological structure, Invent. Math.63, 129–157 (1981).

    Article  MathSciNet  Google Scholar 

  15. R. Greene and K. Shiohama, The isometry groups of manifolds admitting nonconstant convex functions, J. Math. Soc. Japan, 39 1–16 (1987).

    Article  MathSciNet  Google Scholar 

  16. D. Gromoll and W. Meyer, On complete open manifolds of positive curvature. Ann. of Math.90, 75–90 (1969).

    Article  MathSciNet  Google Scholar 

  17. N. Innami, A classification of Busemann G-surfaces which possess convex functions, Acta Math.148, 15–29 (1982).

    Article  MathSciNet  Google Scholar 

  18. N. Innami, On the terminal points of co-rays and rays, Arch. Math. (Basel), 45, No.5, 468–470 (1985).

    Google Scholar 

  19. N. Innami, Splitting theorems of Riemannian manifolds, Compositio Math.47 237–247 (1982).

    MathSciNet  MATH  Google Scholar 

  20. N. Innami, Y. Itokawa, T. Nagano and K. Shiohama, Blaschke Finsler Manifolds and actions of projective Randers changes on cut loci, Preprint 2017.

    Google Scholar 

  21. N. Innami, K. Shiohama and T. Soga, The cut loci, conjugate loci and poles in a complete Riemannian manifold, GAFA, 22, 1400–1406 (2012).

    MathSciNet  MATH  Google Scholar 

  22. Y. Itokawa, K. Shiohama and B. Tiwari, Strictly convex functions on complete Finsler manifolds, Proc. Indian Acad. Sci. (Math. Sci.)126, No. 623–627, (2016).

    Google Scholar 

  23. W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math.69, (1959), 654–666.

    Article  MathSciNet  Google Scholar 

  24. W. Klingenberg, Riemannian Geometry, de Gruyter Studies in Math. 1, de Gruyter, Berlin (1982).

    Google Scholar 

  25. Y. Mashiko, A splitting theorem for Alexandrov spaces, Pacific J. Math.204, 445–458 (2002).

    Article  MathSciNet  Google Scholar 

  26. Y. Mashiko, Affine functions on Alexandrov surfaces, Osaka J. Math.36 853–859 (1999).

    MathSciNet  MATH  Google Scholar 

  27. Y. Mashiko, Convex functions on Alexandrov surfaces, Trans. Amer. Math. Soc.351, no. 9, 3549–3567 (2006).

    Google Scholar 

  28. M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ., 29(1989), no. 1, 17–25.

    Google Scholar 

  29. S.B. Myers, Connections between differential geometry and topology I, Duke Math. J.1, 376–391 (1935).

    Article  MathSciNet  Google Scholar 

  30. S.B. Myers, Connections between differential geometry and topology II, Duke Math. J.2, 95–102 (1936).

    Article  MathSciNet  Google Scholar 

  31. H. Omori, A class of riemannian metrics on a manifold, J. Differential Geom., 2, (1968), 233–252.

    Article  MathSciNet  Google Scholar 

  32. G. Perelman, Proof of soul conjecture of Cheeger-Gromoll, J.Diff. Geom.40, (1994), 299–305.

    MathSciNet  MATH  Google Scholar 

  33. H. Rademacher, Nonreversible Finsler metrics of positive flag curvature, Riemann-Finsler Geometry, MSRI Publications, 50, (2004), 261–302.

    MathSciNet  MATH  Google Scholar 

  34. H. Rauch, Geodesics and Curvature in Differential Geometry in the Large, Yeshiva University Press, New York (1959).

    Google Scholar 

  35. B. Riemann, On the Hypotheses which lie at the Bases of Geometry, Translated by William Kingdon Clifford, Nature, VIII, Nos. 183, 184, (1873), 14–17,36–37.

    Google Scholar 

  36. S. Sabau and K. Shiohama, Topology of complete Finsler manifolds admitting convex functions, Pacific J. Math.276, No 2, (2015), 459–481.

    Google Scholar 

  37. T. Sakai, Riemannian Geometry, Mathematical Monograph, 8 Amer. Math. Soc. (1996).

    Google Scholar 

  38. V.A. Sharafutdinov, The Pogorelov-Klingenberg theorem for manifolds homeomorphic to R n. Sib. Math. J., 18 (1977), 915–925.

    MathSciNet  MATH  Google Scholar 

  39. K. Shiohama, Topology of complete noncompact manifolds, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Mathematics 3, 432–450, (1984).

    MathSciNet  Google Scholar 

  40. K. Shiohama, Riemannian and Finsler Geometry in the Large, Recent Advances in Mathematics, RMS-Lecture Notes Series 21, (2015), 163–179.

    MathSciNet  MATH  Google Scholar 

  41. K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Round Table in Differential Geometry, Séminaire et Congrès, Collection SFM, no. 1, 553–560 (1996).

    Google Scholar 

  42. A. Weinstein, The cut locus and conjugate locus of a Riemannian manifold, Ann. of Math. (2), 36 29–41, (1968).

    Google Scholar 

  43. J.H.C. Whitehead, Convex regions in the geometry of paths, Quarterly Journal of Mathematics (Oxford), 3, (1932), 33–42.

    Article  Google Scholar 

  44. J.H.C. Whitehead, On the covering of a complete space by the geodesics through a point, Ann. of Math. (2) 36, (1935), 679–704.

    Google Scholar 

  45. T. Yamaguchi, The isometry groups of Riemannian manifolds admitting strictly convex functions, Ann. Sci. École Norm. Sup.15, (1982), 205–212.

    Article  MathSciNet  Google Scholar 

  46. T. Yamaguchi, Uniformly locally convex filtrations on complete Riemannian manifolds, Curvature and Topology of Riemannian Manifolds–Proceedings, Katata 1985, Lecture Notes in Mathematics, 1201, (1985) 308–318, Springer-Verlag.

    Google Scholar 

Download references

Acknowledgement

The author’s “Katsuhiro Shiohama” work was supported by JSPS KAKENHI Grant Number15K04864.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shiohama, K., Tiwari, B. (2019). The Global Study of Riemannian-Finsler Geometry. In: Dani, S.G., Papadopoulos, A. (eds) Geometry in History. Springer, Cham. https://doi.org/10.1007/978-3-030-13609-3_16

Download citation

Publish with us

Policies and ethics