Skip to main content

A Generalized Force-Modified Potential Energy Surface (G-FMPES) for Mechanochemical Simulations

  • Chapter
  • First Online:
Emerging Materials and Environment

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 37))

  • 156 Accesses

Abstract

We describe the modifications that a spatially varying external force produces on a Born-Oppenheimer potential energy surface (PES), and in this chapter, we present a formulation for describing a Generalized Force-Modified Potential Energy Surface (G-FMPES). Our formulation shows that the spatially varying force resembling hydrostatic pressure results in the G-FMPES having curvature different from that of the unmodified PES. Using electronic structure methods, the effect of pseudo-hydrostatic pressure on the PES is exemplified by calculating atomistic quantities (including transition states) for (i) conformational transitions in ethane (\(\text {C}_{2}\text {H}_{6}\)) and RDX (hexahydro-1,3,5-trinitro-s-triazine) molecules, (ii) the decomposition of RDX, and (iii) a Diels-Alder reaction between 1,3-butadiene and ethylene. The calculated transition states and Hessian matrices of stationary points of ethane and RDX molecules show that spatially varying external forces shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor. The harmonic spectra of both molecules are blue-shifted with increasing compressive “pressure.” Some stationary points on the RDX-PES disappear under the application of the external force, indicating the merging of an energy minimum with a saddle point. This change in the topology of the PES demonstrates that new reaction pathways may be introduced by the application of mechanical forces. Part of this chapter is reproduced with permission from Refs. (J Chem Phys 143(13):134109 [1]) Copyright 2015 AIP Publishing, (J Chem Phys 145(7):074307 [2]) Copyright 2016 AIP Publishing, and  (Int J Quantum Chem 117(20):e25426 [3]) Copyright 2017 John Wiley & Sons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Subramanian G, Mathew N, Leiding J (2015) A generalized force-modified potential energy surface for mechanochemical simulations. J Chem Phys 143(13):134109

    Article  PubMed  Google Scholar 

  2. Jha SK, Brown K, Todde G, Subramanian G (2016) A mechanochemical study of the effects of compression on a diels-alder reaction. J Chem Phys 145(7):074307

    Google Scholar 

  3. Todde G, Jha SK, Subramanian G (2017) The effect of external forces on the initial dissociation of rdx (1,3,5-trinitro-1,3,5-triazine): a mechanochemical study. Int J Quantum Chem 117(20):e25426

    Google Scholar 

  4. Varvenne C, Bruneval F, Marinica M-C, Clouet E (2013) Point defect modeling in materials: coupling ab initio and elasticity approaches. Phys Rev B 88(13):134102

    Article  Google Scholar 

  5. Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS (2008) Dislocation interaction with c in \(\alpha \)-fe: a comparison between atomic simulations and elasticity theory. Acta Mater 56(14):3450–3460

    Google Scholar 

  6. Ong MT, Leiding J, Tao H, Virshup AM, Martínez TJ (2009) First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. J Am Chem Soc 131(18):6377–6379

    Google Scholar 

  7. Konda SSM, Brantley JN, Varghese BT, Wiggins KM, Bielawski CW, Makarov DE (2013) Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J Am Chem Soc 135(34):12722–12729

    Google Scholar 

  8. Wang J, Kouznetsova TB, Niu Z, Ong MT, Klukovich HM, Rheingold AL, Martinez TJ, Craig SL (2015) Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat Chem 7(4):323–327

    Google Scholar 

  9. Konda SSM, Avdoshenko SM, Makarov DE (2014) Exploring the topography of the stress-modified energy landscapes of mechanosensitive molecules. J Chem Phys 140(10):104114

    Google Scholar 

  10. Silberstein MN, Min K, Cremar LD, Degen CM, Martinez TJ, Aluru NR, White SR, Sottos NR (2013) Modeling mechanophore activation within a crosslinked glassy matrix. J Appl Phys 114(2):023504

    Google Scholar 

  11. Silberstein MN, Cremar LD, Beiermann BA, Kramer SB, Martinez TJ, White SR, Sottos NR (2014) Modeling mechanophore activation within a viscous rubbery network. J Mech Phys Solids 63:141–153

    Google Scholar 

  12. Bailey A, Mosey NJ (2012) Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1, 3-cyclohexadiene. J Chem Phys 136(4):01B613

    Google Scholar 

  13. Kumamoto K, Fukada I, Kotsuki H (2004) Diels–alder reaction of thiophene: dramatic effects of high-pressure/solvent-free conditions. Angew Chem Int Ed 43(15):2015–2017

    Google Scholar 

  14. Mianowski A, Robak Z, Tomaszewicz M, Stelmach S (2012) The boudouard-bell reaction analysis under high pressure conditions. J Therm Anal Calorim 110(1):93–102

    Article  CAS  Google Scholar 

  15. Kiselev VD (2013) High-pressure influence on the rate of diels–alder cycloaddition reactions of maleic anhydride with some dienes. Int J Chem Kinet 45(9):613–622

    Google Scholar 

  16. Kiselev VD, Kornilov DA, Kashaeva EA, Potapova LN, Konovalov AI (2014) Effect of pressure on the rate of the diels-alder reaction of diethyl azodicarboxylate with 9, 10-dimethylanthracene. Russ J Org Chem 50(4):489–493

    Article  CAS  Google Scholar 

  17. McMillan PF (2002) New materials from high-pressure experiments. Nat Mater 1(1):19–25

    Google Scholar 

  18. Gillet P, Badro J, Varrel B, McMillan PF (1995) High-pressure behavior in \(\alpha \)-alpo 4: amorphization and the memory-glass effect. Phys Rev B 51(17):11262

    Google Scholar 

  19. J Torres A, Serment-Moreno V, Escobedo-Avellaneda ZJ, Velazquez G, Welti-Chanes J (2016) Reaction chemistry at high pressure and high temperature. In: High pressure processing of food. Springer, pp 461–478

    Google Scholar 

  20. Hashemi H, Christensen JM, Gersen S, Glarborg P (2015) Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling. Proc Combust Inst 35(1):553–560

    Google Scholar 

  21. Ribas-Arino J, Shiga M, Marx D (2009) Understanding covalent mechanochemistry. Angew Chem Int Ed 48(23):4190–4193

    Google Scholar 

  22. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112(10):5412–5487

    Article  CAS  PubMed  Google Scholar 

  23. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329(5995):1057–1060

    Google Scholar 

  24. Kochhar GS, Bailey A, Mosey NJ (2010) Competition between orbitals and stress in mechanochemistry. Angew Chem Int Ed 49(41):7452–7455

    Google Scholar 

  25. Smalø HS, Rybkin VV, Klopper W, Helgaker T, Uggerud E (2014) Mechanochemistry: the effect of dynamics. J Phys Chem A 118(36):7683–7694

    Google Scholar 

  26. Avdoshenko SM, Makarov DE (2015) Finding mechanochemical pathways and barriers without transition state search. J Chem Phys 142(17):174106

    Google Scholar 

  27. Wang J, Kouznetsova TB, Craig SL (2015) Reactivity and mechanism of a mechanically activated anti-woodward–hoffmann–depuy reaction. J Am Chem Soc 137(36):11554–11557

    Google Scholar 

  28. Makarov DE (2016) Perspective: mechanochemistry of biological and synthetic molecules. J Chem Phys 144(3):030901

    Google Scholar 

  29. Subramanian G, Perez D, Uberuaga BP, Tomé CN, Voter AF (2013) Method to account for arbitrary strains in kinetic Monte Carlo simulations. Phys Rev B 87:144107

    Article  Google Scholar 

  30. Goyal A, Phillpot SR, Subramanian G, Andersson DA, Stanek CR, Uberuaga Blas P (2015) Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide. Phys Rev B 91:094103

    Article  Google Scholar 

  31. Vérité G, Domain C, Fu C-C, Gasca P, Legris A, Willaime F (2013) Self-interstitial defects in hexagonal close packed metals revisited: evidence for low-symmetry configurations in Ti, Zr, and Hf. Phys Rev B 87(13):134108

    Google Scholar 

  32. Garnier T, Manga VR, Bellon P, Trinkle DR (2014) Diffusion of Si impurities in Ni under stress: a first-principles study. Phys Rev B 90:024306

    Article  CAS  Google Scholar 

  33. Mathew N, Picu RC (2011) Molecular conformational stability in cyclotrimethylene trinitramine crystals. J Chem Phys 135(2):024510

    Article  CAS  PubMed  Google Scholar 

  34. Munday LB, Chung PW, Rice BM, Solares SD (2011) Simulations of high-pressure phases in RDX. J Phys Chem B 115(15):4378–4386

    Google Scholar 

  35. Cawkwell MJ, Sewell TD, Zheng L, Thompson DL (2008) Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations. Phys Rev B 78(1):014107

    Google Scholar 

  36. Boyd S, Murray JS, Politzer P (2009) Molecular dynamics characterization of void defects in crystalline (1, 3, 5-trinitro-1, 3, 5-triazacyclohexane). J Chem Phys 131(20):204903

    Google Scholar 

  37. Ramos KJ, Hooks DE, Sewell TD, Cawkwell MJ (2010) Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals. J Appl Phys 108(6):066105

    Google Scholar 

  38. Munday LB, Solares SD, Chung PW (2012) Generalized stacking fault energy surfaces in the molecular crystal \(\alpha \)RDX. Philos Mag 92(24):3036–3050

    Google Scholar 

  39. Mathew N, Picu CR, Chung PW (2013) Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine. J Phys Chem A 117(25):5326–5334

    Google Scholar 

  40. Pal A, Picu RC (2014) Rotational defects in cyclotrimethylene trinitramine (rdx) crystals. J Chem Phys 140(4):044512

    Article  CAS  PubMed  Google Scholar 

  41. Austin DE, Peng Y, Hansen BJ, Miller IW, Rockwood AL, Hawkins AR, Tolley SE (2008) Novel ion traps using planar resistive electrodes: implications for miniaturized mass analyzers. J Am Soc Mass Spectrom 19(10):1435–1441

    Google Scholar 

  42. Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105(41):15755–15760

    Google Scholar 

  43. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505

    Google Scholar 

  44. Kochhar GS, Heverly-Coulson GS, Mosey NJ (2015) Theoretical approaches for understanding the interplay between stress and chemical reactivity. In: Polymer mechanochemistry. Springer, pp 37–96

    Google Scholar 

  45. Stauch T, Dreuw A (2016) Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem Rev 116(22):14137–14180

    Article  CAS  PubMed  Google Scholar 

  46. Henkelman G, Jóhannesson G, Jónsson H (2002) Methods for finding saddle points and minimum energy paths. In: Theoretical methods in condensed phase chemistry, vol 5. Springer, pp 269–302

    Google Scholar 

  47. Uberuaga BP, Hoagland RG, Voter AF, Valone SM (2007) Direct transformation of vacancy voids to stacking fault tetrahedra. Phys Rev Lett 99(13):135501

    Article  CAS  PubMed  Google Scholar 

  48. Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1-2):121–127

    Google Scholar 

  49. Werner H-JKPJ, Knowles PJ, Knizia G, Manby FR, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G et al (2012) Molpro, version 2012.1, a package of ab initio programs. see http://www.molpro.net

  50. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  CAS  Google Scholar 

  51. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Google Scholar 

  52. Zarkevich NA, Johnson DD (2015) Nudged-elastic band method with two climbing images: finding transition states in complex energy landscapes. J Chem Phys 142(2):024106

    Google Scholar 

  53. Bitzek E, Koskinen P, Gähler F, Moseler M, Gumbsch P (2006) Structural relaxation made simple. Phys Rev Lett 97:170201

    Article  PubMed  Google Scholar 

  54. Hartree DR (1928) The wave mechanics of an atom with a non-coulomb central field. Part I. theory and methods. In: Mathematics proceedings Cambridge, vol 24. Cambridge University Press, pp 89–110

    Google Scholar 

  55. Fock V (1930) Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems. Zeitschrift für Physik 61(1–2):126–148

    Article  Google Scholar 

  56. Slater JC (1930) Note on Hartree’s method. Phys Rev 35:210–211

    Article  Google Scholar 

  57. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. xx. A basis set for correlated wave functions. J Chem Phys 72(1):650–654

    Google Scholar 

  58. Kemp JD, Pitzer KS (1936) Hindered rotation of the methyl groups in ethane. J Chem Phys 4(11):749–749

    Google Scholar 

  59. Eyring H, Grant DM, Hecht H (1962) The rotational barrier in ethane. J Chem Educ 39(9):466

    Google Scholar 

  60. Johnson RD III (ed) (2013) NIST computational chemistry comparison and benchmark database, NIST standard reference database number 101, release 16a, august 2013. see http://cccbdb.nist.gov/

  61. Kurnosov AV, Ogienko AG, Goryainov SV, Larionov EG, Manakov AY, Lihacheva AY, Aladko EY, Zhurko FV, Voronin VI, Berger IF et al (2006) Phase diagram and high-pressure boundary of hydrate formation in the ethane- water system. J Phys Chem B 110(43):21788–21792

    Google Scholar 

  62. Cawkwell MJ, Ramos KJ, Hooks DE, Sewell TD (2010) Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading. J Appl Phys 107(6):063512

    Google Scholar 

  63. Mathew N, Picu RC (2013) Slip asymmetry in the molecular crystal cyclotrimethylenetrinitramine. Chem Phys Lett 582:78–81

    Article  CAS  Google Scholar 

  64. Munday LB, Mitchell RL, Knap J, Chung PW (2013) Role of molecule flexibility on the nucleation of dislocations in molecular crystals. Appl Phys Lett 103(15):151911

    Google Scholar 

  65. Rice BM, Chabalowski CF (1997) Ab initio and nonlocal density functional study of 1, 3, 5-trinitro-s-triazine (RDX) conformers. J Phys Chem A 101(46):8720–8726

    Google Scholar 

  66. Karpowicz RJ, Brill TB (1984) Comparison of the molecular structure of hexahydro-1, 3, 5-trinitro-s-triazine in the vapor, solution and solid phases. J Phys Chem 88(3):348–352

    Google Scholar 

  67. Davidson AJ, Oswald IDH, Francis DJ, Lennie AR, Marshall WG, Millar DIA, Pulham CR, Warren JE, Cumming AS (2008) Explosives under pressure-the crystal structure of \(\gamma \)-RDX as determined by high-pressure x-ray and neutron diffraction. Cryst Eng Comm 10(2):162–165

    Google Scholar 

  68. Millar DIA, Oswald IDH, Barry C, Francis DJ, Marshall WG, Pulham CR, Cumming AS (2010) Pressure-cooking of explosives-the crystal structure of \(\varepsilon \)-RDX as determined by x-ray and neutron diffraction. Chem Commun 46:5662–5664

    Google Scholar 

  69. Dreger ZA, Gupta YM (2010) Raman spectroscopy of high-pressure- high-temperature polymorph of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (\(\varepsilon \)-RDX). J Phys Chem A 114(26):7038–7047

    Google Scholar 

  70. Zheng X, Zhao J, Tan D, Liu C, Song Y, Yang Yanqiang (2011) High-pressure vibrational spectroscopy of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX). Propellants Explos Pyrotech 36(1):22–27

    Article  CAS  Google Scholar 

  71. Ciezak JA, Jenkins TA, Liu Z, Hemley RJ (2007) High-pressure vibrational spectroscopy of energetic materials: hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. J Phys Chem A 111(1):59–63

    Google Scholar 

  72. Pereverzev A, Sewell TD, Thompson DL (2013) Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of \(\alpha \)-and \(\gamma \)-RDX. J Chem Phys 139(4):044108

    Google Scholar 

  73. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) The mechanism for unimolecular decomposition of rdx (1, 3, 5-trinitro-1, 3, 5-triazine), an ab initio study. J Phys Chem A 104(11):2261–2272

    Google Scholar 

  74. Harris NJ, Lammertsma K (1997) Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine. J Am Chem Soc 119(28):6583–6589

    Google Scholar 

  75. Shishkov IF, Vilkov LV, Kolonits M, Rozsondai B (1991) The molecular geometries of some cyclic nitramines in the gas phase. Struct Chem 2(1):57–64

    Google Scholar 

  76. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2001) A detailed model for the decomposition of nitramines: RDX and HMX. J Comput Aided Mater 8(2-3):203–212

    Google Scholar 

  77. Schweigert IV (2015) Ab initio molecular dynamics of high-temperature unimolecular dissociation of gas-phase RDX and its dissociation products. J Phys Chem A 119(12):2747–2759

    Google Scholar 

  78. Wu CJ, Fried LE (1997) Ab initio study of RDX decomposition mechanisms. J Phys Chem A 101(46):8675–8679

    Google Scholar 

  79. Molt RW, Watson T, Bazanté AP, Bartlett RJ, Richards NGJ (2016) Gas phase RDX decomposition pathways using coupled cluster theory. Phys Chem Chem Phys 18(37):26069–26077

    Google Scholar 

  80. Diels O, Alder K (1928) Syntheses in the hydroaromatic series. I. addition of “diene” hydrocarbons. Justus Liebigs Ann Chem 460:98–122

    Google Scholar 

  81. Carruthers W (1978) Some Mod Methods Org Synth, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  82. Cycloaddition reactions in organic synthesis. Pergamon Press, Oxford (1990)

    Google Scholar 

  83. Boger DL, Weinberg SN (1987) Hetero-Diels methodology in organic synthesis. Academic Press Inc, San Diego

    Google Scholar 

  84. Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935-1995. Acc Chem Res 28(2):81–90

    Google Scholar 

  85. Lee GY, Kim HY, Han IS (1999) DFT studies of the diels-alder reaction of 1, 4-diaza-1, 3-butadiene with acrolein. Korean Chem Soc 20(5):621–623

    CAS  Google Scholar 

  86. Domingo LR, Andrés J (2003) Enhancing reactivity of carbonyl compounds via hydrogen-bond formation. A DFT study of the hetero-diels- alder reaction between butadiene derivative and acetone in chloroform. J Org Chem 68(22):8662–8668

    Google Scholar 

  87. Zhang X, Haifeng D, Wang Z, Yun-Dong W, Ding K (2006) Experimental and theoretical studies on the hydrogen-bond-promoted enantioselective hetero-diels-alder reaction of danishefsky’s diene with benzaldehyde. J Org Chem 71(7):2862–2869

    Article  CAS  PubMed  Google Scholar 

  88. Akiyama T, Morita H, Fuchibe K (2006) Chiral brønsted acid-catalyzed inverse electron-demand AZA diels-alder reaction. J Am Chem Soc 128(40):13070–13071

    Article  CAS  PubMed  Google Scholar 

  89. Esquivias J, Arrayás RG, Carretero JC (2007) Catalytic asymmetric inverse-electron-demand diels- alder reaction of n-sulfonyl-1-AZA-1, 3-dienes. J Am Chem Soc 129(6):1480–1481

    Google Scholar 

  90. Liu D, Canales E, Corey EJ (2007) Chiral oxazaborolidine- aluminum bromide complexes are unusually powerful and effective catalysts for enantioselective diels-alder reactions. J Am Chem Soc 129(6):1498–1499

    Google Scholar 

  91. Domingo LR, Sáez JA (2009) Understanding the mechanism of polar diels-alder reactions. Org Biomol Chem 7(17):3576–3583

    Google Scholar 

  92. Jiang H, Cruz DC, Li Y, Lauridsen VH, Jørgensen KA (2013) Asymmetric organocatalytic thio-diels–alder reactions via trienamine catalysis. J Am Chem Soc 135(13):5200–5207

    Google Scholar 

  93. Sato S, Maeda Y, Guo J-D, Yamada M, Mizorogi N, Nagase Shigeru, Akasaka Takeshi (2013) Mechanistic study of the diels-alder reaction of paramagnetic endohedral metallofullerene: reaction of la@ c82 with 1, 2, 3, 4, 5-pentamethylcyclopentadiene. J Am Chem Soc 135(15):5582–5587

    Article  CAS  PubMed  Google Scholar 

  94. Yuan C, Biao D, Yang L, Liu B (2013) Bioinspired total synthesis of bolivianine: a diels-alder/intramolecular hetero-diels-alder cascade approach. J Am Chem Soc 135(25):9291–9294

    Article  CAS  PubMed  Google Scholar 

  95. Dell’Amico L, Vega-Peñaloza A, Cuadros S, Melchiorre P (2016) Enantioselective organocatalytic diels–alder trapping of photochemically generated hydroxy-o-quinodimethanes. Angew Chem Int Ed 55(10):3313–3317

    Google Scholar 

  96. Andrews DR, Barton DHR, Hesse RH, Pechet MM (1986) Synthesis of 25-hydroxy-and 1. alpha., 25-dihydroxy vitamin d3 from vitamin d2 (calciferol). J Org Chem 51(25):4819–4828

    Google Scholar 

  97. Lygo B, Bhatia M, Cooke JWB, Hirst DJ (2003) Synthesis of (\(\pm \))-solanapyrones a and b. Tetrahedron Lett 44(12):2529–2532

    Google Scholar 

  98. Burns AC, Forsyth CJ (2008) Intramolecular diels-alder/Tsuji allylation assembly of the functionalized trans-decalin of salvinorin A. Org Lett 10(1):97–100

    Google Scholar 

  99. Chackalamannil S, Davies RJ, Wang Y, Asberom T, Doller D, Wong J, Leone D, McPhail AT (1999) Total synthesis of (+)-himbacine and (+)-himbeline. J Org Chem 64(6):1932–1940

    Google Scholar 

  100. Funel JA, Abele S (2013) Industrial applications of the diels–alder reaction. Angew Chem Int Ed 52(14):3822–3863

    Google Scholar 

  101. Roos BO (1987) The complete active space self-consistent field method and its applications in electronic structure calculations. Adv Chem Phys 69:399–445

    Google Scholar 

  102. Roos BO (1980) The complete active space SCF method in a fock-matrix-based super-ci formulation. Int J Quantum Chem Symp 18(S14):175–189

    Google Scholar 

  103. Bernardi F, Bottoni A, Field MJ, Guest MF, Hillier IH, Robb MA, Venturini A (1988) MC-SCF study of the diels-alder reaction between ethylene and butadiene. J Am Chem Soc 110(10):3050–3055

    Google Scholar 

  104. Wiest O, Montiel DC, Houk KN (1997) Quantum mechanical methods and the interpretation and prediction of pericyclic reaction mechanisms. J Phys Chem A 101(45):8378–8388

    Google Scholar 

  105. Goldstein E, Beno B, Houk KN (1996) Density functional theory prediction of the relative energies and isotope effects for the concerted and stepwise mechanisms of the diels-alder reaction of butadiene and ethylene. J Am Chem Soc 118(25):6036–6043

    Google Scholar 

  106. Goodrow A, Bell AT, Head-Gordon M (2009) Transition state-finding strategies for use with the growing string method. J Chem Phys 130(24):244108

    Google Scholar 

  107. Rowley D, Steiner H (1951) Kinetics of diene reactions at high temperatures. Discuss Faraday Soc 10:198–213

    Article  Google Scholar 

  108. Evans MG (1939) The activation energies of reactions involving conjugated systems. Trans Faraday Soc 35:824–834

    Article  CAS  Google Scholar 

  109. Robert Burns Woodward and Roald Hoffmann (1969) The conservation of orbital symmetry. Angew Chem Int Ed 8(11):781–853

    Article  Google Scholar 

  110. Dewar MJ, Griffin AC, Kirschner S (1974) Mindo/3 study of some diels-alder reactions. J Am Chem Soc 96(19):6225–6226

    Google Scholar 

  111. Dewar MJS, Olivella S, Rzepa HS (1978) Ground states of molecules. 49. mindo/3 study of the retro-diels-alder reaction of cyclohexene. J Am Chem Soc 100(18):5650–5659

    Google Scholar 

  112. Frey HM, Pottinger R (1978) Thermal unimolecular reactions of vinylcyclobutane and isopropenylcyclobutane. J Chem Soc Faraday Trans 1 74:1827–1833

    Google Scholar 

  113. Dewar MJS, Pierini AB (1984) Mechanism of the diels-alder reaction. studies of the addition of maleic anhydride to furan and methylfurans. J Am Chem Soc 106(1):203–208

    Google Scholar 

  114. Dewar MJS (1984) Multibond reactions cannot normally be synchronous. J Am Chem Soc 106(1):209–219

    Article  CAS  Google Scholar 

  115. Dewar MJS, Olivella S, Stewart JJP (1986) Mechanism of the diels-alder reaction: reactions of butadiene with ethylene and cyanoethylenes. J Am Chem Soc 108(19):5771–5779

    Google Scholar 

  116. Houk KN, Lin YT, Brown FK (1986) Evidence for the concerted mechanism of the diels-alder reaction of butadiene with ethylene. J Am Chem Soc 108(3):554–556

    Google Scholar 

  117. Dewar MJS, Jie C (1992) Mechanisms of pericyclic reactions: the role of quantitative theory in the study of reaction mechanisms. Acc Chem Res 25(11):537–543

    Article  CAS  Google Scholar 

  118. Townshend RE, Ramunni G, Segal G, Hehre WJ, Salem L (1976) Organic transition states. V. the diels-alder reaction. J Am Chem Soc 98(8):2190–2198

    Google Scholar 

  119. Sakai S (2000) Theoretical analysis of concerted and stepwise mechanisms of diels-alder reaction between butadiene and ethylene. J Phys Chem A 104(5):922–927

    Article  CAS  Google Scholar 

  120. Cui C-X, Liu Y-J (2014) A thorough understanding of the diels-alder reaction of 1, 3-butadiene and ethylene. J Phys Org Chem 27(8):652–660

    Article  CAS  Google Scholar 

  121. Li Y, Houk KN (1993) Diels-alder dimerization of 1, 3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited. J Am Chem Soc 115(16):7478–7485

    Article  CAS  Google Scholar 

  122. Bartlett PD, Schueller KE (1968) Cycloaddition. VIII. ethylene as a dienophile. a minute amount of 1, 2-cycloaddition of ethylene to butadiene. J Am Chem Soc 90(22):6071–6077

    Google Scholar 

  123. Lide DR (eds) (2009) CRC handbook of chemistry and physics, 89th edn. CRC/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  124. Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627

    Google Scholar 

  125. Ivanov AN, Litvin DF, Savenko BN, Smirnov LS, Voronin VI, Teplykh AE (1995) High pressure cell for neutron diffraction investigations. High Pressure Res 14(1–3):209–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinath Subramanian .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Proof that the external force field is conservative

For a 3-dimensional, N-atom system, the position vector of the \(j\textrm{th}\) atom, and the external force vector on it are given in component form as

$$\begin{aligned} \textbf{r}^{(j)} &= \left( { x^{(j)},y^{(j)},z^{(j)} }\right) \end{aligned}$$
(2.14)
$$\begin{aligned} \textbf{f}_\textrm{ext}^{(j)} &= \left( { f_{\textrm{ext},x}^{(j)},f_{\textrm{ext},y}^{(j)},f_{\textrm{ext},z}^{(j)} }\right) \end{aligned}$$
(2.15)

where various \(\left\{ { \textbf{f}_\textrm{ext}^{(j)} \ \forall \ j = 1,2,3 \ldots N }\right\} \) make up the external force field \(\textbf{F}_\textrm{ext}(\textbf{R})\).

Geometric centroid of the configuration is given by the mean position of all the atoms in the configuration as

$$\begin{aligned} \textbf{c} = \left( { c_{x}, c_{y}, c_{z} }\right) = \left( { \left\langle {x^{(j)}}\right\rangle , \left\langle {y^{(j)}}\right\rangle , \left\langle {z^{(j)}}\right\rangle }\right) \end{aligned}$$
(2.16)

where \(\left\langle {\cdot }\right\rangle \) denotes an average taken over all N atoms.

According to our prescription of pseudo-hydrostatic pressure, external force on the \(j\textrm{th}\) atom is given as

$$\begin{aligned} \textbf{f}_\textrm{ext}^{(j)} = P_{HP} \left[ { \textbf{r}^{(j)} - \textbf{c} }\right] ; \quad \forall \quad j = 1,2,3 \ldots N \end{aligned}$$
(2.17)

where \(P_{HP}\) is a user-defined “pressure.”

First derivatives of the external force vector are given by

$$\begin{aligned} \left\{ {\frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial x^{(k)}}, \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial y^{(k)}}, \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial z^{(k)}} ; \quad \forall \quad j,k = 1,2,3 \ldots N}\right\} \end{aligned}$$
(2.18)

The first of this set is

$$\begin{aligned} \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial x^{(k)}} = P_{HP}\left( { \frac{\partial \textbf{r}^{(j)}}{\partial x^{(k)}} - \frac{\partial \textbf{c}}{\partial x^{(k)}}}\right) \end{aligned}$$
(2.19)

with

$$\begin{aligned} \frac{\partial \textbf{r}^{(j)}}{\partial x^{(k)}} &= \left( { \frac{\partial x^{(j)}}{\partial x^{(k)}}, \frac{\partial y^{(j)}}{\partial x^{(k)}}, \frac{\partial z^{(j)}}{\partial x^{(k)}} }\right) = \left( {\delta _{jk},0,0}\right) \end{aligned}$$
(2.20)
$$\begin{aligned} \frac{\partial \textbf{c}}{\partial x^{(k)}} &= \left( { \frac{\partial \left\langle {x}\right\rangle }{\partial x^{(k)}}, \frac{\partial \left\langle {y}\right\rangle }{\partial x^{(k)}}, \frac{\partial \left\langle {z}\right\rangle }{\partial x^{(k)}} }\right) = \left( {\frac{1}{N},0,0}\right) \end{aligned}$$
(2.21)

where \(\delta _{jk}\) is the Kronecker delta. Using this, and similar results for the other derivatives, first derivatives of the external force vector are

$$\begin{aligned} \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial x^{(k)}} &= P_{HP}\left( {\delta _{jk} - \frac{1}{N},0,0 }\right) \end{aligned}$$
(2.22)
$$\begin{aligned} \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial y^{(k)}} &= P_{HP}\left( {0,\delta _{jk} - \frac{1}{N},0 }\right) \end{aligned}$$
(2.23)
$$\begin{aligned} \frac{\partial \textbf{f}_\textrm{ext}^{(j)}}{\partial z^{(k)}} &= P_{HP}\left( {0,0,\delta _{jk} - \frac{1}{N} }\right) \end{aligned}$$
(2.24)

which are all constant for all values of j and k and therefore exist and are continuous everywhere, proving that the external force field is conservative.

Appendix 2: The NEB method on a G-FMPES

With the understanding of how to compute energies, forces, and curvatures on a G-FMPES, the NEB implementation for finding MEPs on a G-FMPES closely follows the original implementation, but with a few crucial modifications. For clarity, our implementation of a G-FMPES is outlined below.

The start and end point structures are re-optimized with the external force and a set of images is initialized between them. Consecutive images are connected by harmonic springs with an equilibrium length of zero and a user-specified spring stiffness \(k_\textrm{spring}\) (the actual value of which is not particularly important as long as it is greater than zero, but needs to be on the order of the system forces for efficient convergence). The band is iteratively optimized until the net force on each image is minimized to within a user-specified tolerance. At each iteration, the net force on the \(i^\textrm{th}\) image located at \(\textbf{R}^{(i)}\) on the G-FMPES is given by the projected (nudged) forces as:

$$\begin{aligned} \overline{\textbf{F}}_\textrm{net,nudged}^{(i)} = \left[ {\textbf{F}_\textrm{grad}^{(i)}} + \textbf{F}_\textrm{ext}^{(i)}\right] _\perp + \left[ { \textbf{F}_\textrm{spring}^{(i)} }\right] _\parallel \end{aligned}$$
(2.25)

where the subscript \(\perp \) (or \(\parallel \)) on a vector indicates its component perpendicular (or parallel) to the unit tangent \(\hat{\boldsymbol{\tau }}^{(i)}\). The un-normalized tangent \(\boldsymbol{\tau }^{(i)}\) is computed using Henkelman and Jónsson’s improved tangent estimate [50]. Defining

$$\begin{aligned} \boldsymbol{\tau }^{(i)+} &= \textbf{R}^{(i+1)} - \textbf{R}^{(i)}\end{aligned}$$
(2.26)
$$\begin{aligned} \boldsymbol{\tau }^{(i)-} &= \textbf{R}^{(i)} - \textbf{R}^{(i-1)} \end{aligned}$$
(2.27)

the tangent is estimated as

$$\begin{aligned} \boldsymbol{\tau }^{(i)} = {\left\{ \begin{array}{ll} \boldsymbol{\tau }^{(i)+} &{} \textrm{if } \quad \overline{V}^{(i+1)}> \overline{V}^{(i)} > \overline{V}^{(i-1)}\\ \boldsymbol{\tau }^{(i)-} &{} \textrm{if } \quad \overline{V}^{(i+1)}< \overline{V}^{(i)} < \overline{V}^{(i-1)}\\ \end{array}\right. } \end{aligned}$$
(2.28)

where the different \(\overline{V}\) are computed using the line integral, as defined in the main article. In the event that the three consecutive values of \(\overline{V}\) are neither strictly increasing nor strictly decreasing, i.e., if \(\overline{V}^{(i+1)} \le \overline{V}^{(i)} \ge \overline{V}^{(i-1)}\) or \(\overline{V}^{(i+1)} \ge \overline{V}^{(i)} \le \overline{V}^{(i-1)}\), in order to prevent abrupt switching between two possible tangents, the tangent is taken to be a weighted average as

$$\begin{aligned} \boldsymbol{\tau }^{(i)} = {\left\{ \begin{array}{ll} \boldsymbol{\tau }^{(i)+}\Delta \overline{V}^{(i)+} + \boldsymbol{\tau }^{(i)-}\Delta \overline{V}^{(i)-}&{} \textrm{if } \quad \overline{V}^{(i+1)}> \overline{V}^{(i-1)}\\ \boldsymbol{\tau }^{(i)+}\Delta \overline{V}^{(i)-} + \boldsymbol{\tau }^{(i)-}\Delta \overline{V}^{(i)+}&{} \textrm{if } \quad \overline{V}^{(i+1)}< \overline{V}^{(i-1)}\\ \end{array}\right. } \end{aligned}$$
(2.29)

with

$$\begin{aligned} \Delta \overline{V}^{(i)+} &= \max \left( \;{ \left| { \overline{V}^{(i+1)} - \overline{V}^{(i)}}\right| ,\left| { \overline{V}^{(i-1)} - \overline{V}^{(i)}}\right| \;}\right) \end{aligned}$$
(2.30)
$$\begin{aligned} \Delta \overline{V}^{(i)-} &= \min \left( \;{ \left| { \overline{V}^{(i+1)} - \overline{V}^{(i)}}\right| ,\left| { \overline{V}^{(i-1)} - \overline{V}^{(i)}}\right| \;}\right) \end{aligned}$$
(2.31)

The component of the spring force parallel to the tangent is computed as

$$\begin{aligned} \left[ { \textbf{F}_\textrm{spring}^{(i)} }\right] _\parallel = k_\textrm{spring} \left( \;{ \left\Vert { \boldsymbol{\tau }^{(i)+} } \right\Vert - \left\Vert { \boldsymbol{\tau }^{(i)-} } \right\Vert }\;\right) \hat{\boldsymbol{\tau }}^{(i)} \end{aligned}$$
(2.32)

At each iteration, the climbing-image method [51] is applied to the highest energy image along the band. This image, identified by \(i=h\), is free from all spring forces and is assigned a climbing force computed by inverting the component of the gradient plus external forces along the tangent to this image which is expressed as

$$\begin{aligned} \overline{\textbf{F}}_\textrm{net,climb}^{(i)} = \left( {\textbf{F}_\textrm{grad}^{(i)}} + \textbf{F}_\textrm{ext}^{(i)}\right) - 2 \left[ { \left( {\textbf{F}_\textrm{grad}^{(i)}} + \textbf{F}_\textrm{ext}^{(i)}\right) \cdot \hat{\boldsymbol{\tau }}^{(i)} }\right] \hat{\boldsymbol{\tau }}^{(i)} \end{aligned}$$
(2.33)

and makes the highest image move uphill along the direction of the first eigenvector, and downhill along all other directions.

In the more recent variation with two climbing images [52], the highest image (with \(i=h\)) is not allowed to climb but is nudged in the usual manner by assigning its net force to be equal to \(\overline{\textbf{F}}_\textrm{net,nudged}\) as in Eq. (2.25). However, its two nearest neighbors (one from each side of the band, i.e., images with \(i=h\pm 1\)) are assigned climbing forces as in Eq. (2.33). This prescription results in a higher density of images near the saddle point and is particularly useful for MEPs with unusually high curvatures near the saddle point which would cause the NEB tangent direction to be different from the MEP tangent direction.

Having computed the net force on each image, the band is iteratively optimized until it is well-converged by moving each image toward the point of minimum net force using a suitable optimizer.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, S.K., Subramanian, G. (2024). A Generalized Force-Modified Potential Energy Surface (G-FMPES) for Mechanochemical Simulations. In: Shukla, M., Ferguson, E., Leszczynski, J. (eds) Emerging Materials and Environment. Challenges and Advances in Computational Chemistry and Physics, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-39470-6_2

Download citation

Publish with us

Policies and ethics