Skip to main content

Crop Responses to Metal Toxicity

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1

Abstract

Sustainable crop production is the key to global food security. With progress in industrialization, threats of pollution have increased, and one of them is metal toxicity. An increase in metal concentration in soil, over the prescribed safety limits, affects crop productivity and enhances the chances of food toxicity. To overcome the toxic effects of metal adulteration, it is necessary to understand crop responses to metal toxicity. In this chapter, the physiological, biochemical, and morphological changes in crop responses to metal toxicity are discussed. Moreover, various management options to alleviate metal toxicity are also discussed. This chapter will provide a deep understanding of the metal toxicity in plants and also its possible remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abedi T, Mojiri A (2020) Cadmium uptake by wheat (Triticum aestivum L.) an overview. Plan Theory 9:500

    Google Scholar 

  • Abedin MJ, Meharg AA (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant and Soil 243:57–66

    Google Scholar 

  • Agnihotri A, Seth CS (2019) Transgenic Brassicaceae: a promising approach for phytoremediation of heavy metals. In: Transgenic plant technology for remediation of toxic metals and metalloids. Academic Press, London, pp 239–255

    Google Scholar 

  • Amirjani M (2012) Effects of cadmium on wheat growth and some physiological factors. International Journal of Forest, Soil and Erosion (IJFSE) 2(1):50–58

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signaling transduction. Annu Rev Plant Biol 55:373

    PubMed  Google Scholar 

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang, X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332

    Google Scholar 

  • Asiminicesei DM, Vasilachi IC, Gavrilescu MARIA (2020) Heavy metal contamination of medicinal plants and potential implications on human health. Rev Chim 71:16–36

    Google Scholar 

  • Baquy MA, Li J, Xu C, et al (2017) Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops. Solid Earth 8:149–159

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Google Scholar 

  • Bharti R, Sharma R (2022) Effect of heavy metals: an overview. Mater Today Proc 51:880–885

    Google Scholar 

  • Bohórquez DV, Shahid RA, Erdmann A, Kreger AM, Wang Y, Calakos N, Wang F, Liddle RA (2015) Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells. J Clin Invest 125:782–786

    PubMed  PubMed Central  Google Scholar 

  • Borges CE, Cazetta JO, Sousa FBFD, Oliveira KS (2020) Aluminum toxicity reduces the nutritional efficiency of macronutrients and micronutrients in sugarcane seedlings. Ciec. e Agrotecnologia 44:e015120

    Google Scholar 

  • Chen YG, Huang JH, Luo R, Ge HZ, WoÅ‚owicz A, Wawrzkiewicz M, GÅ‚adysz-PÅ‚aska A, LiB YQX, KoÅ‚odyÅ„ska D, Lv GY (2021) Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation and production processes in China. Ecotoxicol Environ Saf 219:112336

    PubMed  Google Scholar 

  • da Cruz TN, Savassa SM, Montanha GS, Ishida JK, de Almeida E, Tsai SM, Lavres Junior J, Pereira de Carvalho HW (2019) A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO4 and ZnO nanoparticles on plants. Sci Rep 9:1–12

    Google Scholar 

  • Das R, Jayalekshmy V (2015) Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J Glob Biosci 4:2678–2698

    Google Scholar 

  • Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19(1):53–60

    Google Scholar 

  • Dimkpa CO, Singh U, Adisa IO, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018) Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy, 8(9):158

    Google Scholar 

  • Elango D, Devi KD, Jeyabalakrishnan HK, Rajendran K, Haridass VKT, Dharmaraj D, Charuchandran CV, Wang W, Fakude MR (2022) Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. J Agric Food Res 10:100374

    Google Scholar 

  • Feng SJ, Liu XS, Cao HW, Yang ZM (2021) Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for cleanup in wetland. Environ Pollut 288:117837

    PubMed  Google Scholar 

  • Germana MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104:283–300

    Google Scholar 

  • Guerriero G, Sutera FM, Torabi-Pour N, Renaut J, Hausman JF, Berni R, Pennington HC, Welsh M, Dehsorkhi A, Zancan LR, Saffie-Siebert S (2021) Phyto-courier a, silicon particle-based nano-biostimulant: evidence from Cannabis sativa exposed to salinity. ACS Nano 15:3061–3069

    PubMed  Google Scholar 

  • Guo F, Ding C, Zhou Z, Huang G, Wang X (2018) Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotoxicol Environ Saf 148:303–310

    PubMed  Google Scholar 

  • Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

    PubMed  PubMed Central  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Proc Imp 17:177–185

    Google Scholar 

  • Imran MA, Ch MN, Khan RM, Ali Z, Mahmood T (2013) Toxicity of arsenic (As) on seed germination of sunflower (Helianthus annuus L.). Int J Phys Sci 8(17):840–847

    Google Scholar 

  • Jaffar MH, Zhang G, Wu F, Wei K, Chen, Z (2005) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168(2):255–261

    Google Scholar 

  • Kampfenkel K, Van Montagu M, Inzé D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants (implications to oxidative stress). Plant Physiol 107:725–735

    PubMed  PubMed Central  Google Scholar 

  • Kaur S, Singh D, Singh K (2017) Effect of selenium application on arsenic uptake in rice (Oryza sativa L.). Environ Monit Assess 189:1–8

    Google Scholar 

  • Khadijeh B, Kholderarin B, Moladshohi A (2011) Effect of Cd on growth, protein content and peroxidase activity in Pea plants. Pak J Bot 43(3):1467–1470

    Google Scholar 

  • Khan TA (2011) Trace elements in the drinking water and their possible health effects in Aligarh City. India J Water Res Prot 3:522

    Google Scholar 

  • Konate A, He X, Zhang Z, MaY ZP, Alugongo GM, Rui Y (2017) Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9:790

    Google Scholar 

  • Kumar P, Goud EL, Devi P, Dey SR, Dwivedi P (2022) Heavy metals: transport in plants and their physiological and toxicological effects. In: Plant metal and metalloid transporters. Springer, Cham, pp 23–54

    Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Google Scholar 

  • Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Comptes Rendus Bio 334:118–126

    Google Scholar 

  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    PubMed  Google Scholar 

  • Li G, Li C, Rengel Z, Liu H, Zhao P (2020) Excess Zn-induced changes in physiological parameters and expression levels of TaZips in two wheat genotypes. Environ Exp Bot 177:104133

    Google Scholar 

  • Licinio A, Laur J, Pitre FE, Labrecque M (2022) Willow and herbaceous species’ phytoremediation potential in Zn-contaminated farm field soil in eastern Québec, Canada: a greenhouse feasibility study. Plan Theory 12:167

    Google Scholar 

  • Llamas A, Ullrich CI, Sanz, A (2008) Ni2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiol Biochem 46(10):905–910

    Google Scholar 

  • Luo Z-B, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    PubMed  Google Scholar 

  • Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121

    PubMed  Google Scholar 

  • Malik S, Prasad S, Ghoshal S, Kumari T, Shekhar S (2023) Plant mediated techniques in detoxification of mercury contaminated soils. In: Bioremediation and phytoremediation technologies in sustainable soil management. Apple Academic Press, Palm Bay, pp 459–490

    Google Scholar 

  • Memon AR, Aktoprakligil D, Özdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health. In: Environmental biotechnology: for sustainable future. Springer, Singapore, pp 103–125

    Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    PubMed  Google Scholar 

  • Morales ME, Berkowitz SA (2016) The relationship between food insecurity, dietary patterns, and obesity. Curr Nutr Rep 5:54–60

    PubMed  PubMed Central  Google Scholar 

  • Oladoye PO, Olowe OM, Asemoloye MD (2022) Phytoremediation technology and food security impacts of heavy metal contaminated soils: a review of literature. Chemosphere 288:132555

    PubMed  Google Scholar 

  • Page V, Feller U (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5:447–463

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Brazilian J Plant Physiol 17:95–102

    Google Scholar 

  • Piscitelli SC, Burstein AH, Welden N, Gallicano KD, Falloon J (2002) The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 34:234–238

    PubMed  Google Scholar 

  • Poston RG, Saha RN (2019) Epigenetic effects of polybrominated diphenyl ethers on human health. Int J Environ Res Public Health 16:2703

    PubMed  PubMed Central  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    Google Scholar 

  • Raffa CM, Chiampo F, Shanthakumar S (2021) Remediation of metal/metalloid-polluted soils: a short review. Appl Sci 11:4134

    Google Scholar 

  • Rai PK (2019) Heavymetals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:100393

    Google Scholar 

  • Raja S, Farhat F, Tariq A, Malik Z, Aziz RB, Kamran M, Elsharkawy MM, Ali A, Al-Hashimi A, Elshikh MS (2022) Genetic behavior of tomato (Solanum lycopersicum L.) germplasm governing heavy metal tolerance and yield traits under wastewater irrigation. Plan Theory 11:2973

    Google Scholar 

  • Rasheed A, Fahad S, Hassan MU, Tahir MM, Aamer M, Wu ZM (2020) A review on aluminum toxicity and quantitative trait loci mapping in rice (Oryza sativa L). Applied Ecology & Environmental Research 18(3)

    Google Scholar 

  • Rehman F, Khan FA, Varshney D, Naushin F, Rastogi J (2011) Effect of cadmium on the growth of tomato. Biol Med 3(2):187–90

    Google Scholar 

  • Reis S, Pavia I, Carvalho A, Moutinho PJ, Correia C, Lima-Brito J (2018) Seed priming with iron and zinc in bread wheat: effects in germination, mitosis and grain yield. Protoplasma 255:1179–1194

    PubMed  Google Scholar 

  • Retamal-Salgado J, Hirzel J, Walter I, Matus I (2017) Bioabsorption and bioaccumulation of cadmium in the straw and grain of maize (Zea mays L.) in growing soils contaminated with cadmium in different environment. Int J Environ Res Public Health 14:1399

    PubMed  PubMed Central  Google Scholar 

  • Ricardo FF, Ferreira RR, Pereira GJ, Molina SM, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell, Tissue and Organ Culture 71:125–131

    Google Scholar 

  • Rizvi A, Zaidi A, Ameen F, Ahmed B, AlKahtani MD, Khan MS (2020) Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Advances, 10(63):38379–38403

    Google Scholar 

  • Romero-Estévez D, Yánez-Jácome GS, Simbaña-Farinango K, Navarrete H (2019) Content and the relationship between cadmium, nickel, and lead concentrations in Ecuadorian cocoa beans from nine provinces. Food Control 106:106750

    Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants 10:277

    PubMed  PubMed Central  Google Scholar 

  • Sarma B, Gogoi L, Gogoi N, Kataki R (2022) Crop plants under metal stress and its remediation. In: Plant stress: challenges and management in the new decade. Springer, Cham, pp 57–71

    Google Scholar 

  • Savabieasfahani M, Lochmiller RL, Rafferty DP, Sinclair JA (1998) Sensitivity of wild cotton rats (Sigmodon hispidus) to the immunotoxic effects of low-level arsenic exposure. Arch Environ Contam Toxicol 34:289–296

    Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR (2010) Heavy metal toxicity in plants. Plant adaptation and phytoremediation, Springer, Dordrecht, pp 71–97

    Google Scholar 

  • Sharma S, Singh B, Manchanda V (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Google Scholar 

  • Sharma D, Gahtyari N, Sharma P, Khulbe R, Pal R, Kant L (2022) Doubled haploidy: an accelerated breeding tool for stress resilience breeding in cereals. In: Next-generation plant breeding approaches for stress resilience in cereal crops. Springer, Singapore, pp 199–240

    Google Scholar 

  • Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Kumawat S, Singh A, Prasad M, Sonah H (2020) Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 168:437–455

    PubMed  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Google Scholar 

  • Tchounwou PB (2018) Heavy metal toxicity and the environment in molecular, clinical and environmental toxicology. J Anal Bioanal Tech 9:396

    Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    PubMed  PubMed Central  Google Scholar 

  • Velásquez-Ferrín A, Babos DV, Marina-Montes C, Anzano J (2021) Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis. Appl Spectrosc Rev 56:492–512

    Google Scholar 

  • Vischetti C, Marini E, Casucci C, De Bernardi A (2022) Nickel in the environment: Bioremediation techniques for soils with low or moderate contamination in European Union. Environ 9(10):133

    Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    PubMed  Google Scholar 

  • Wang XP, Li QQ, Pei ZM, Wang SC (2018) Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant 62:801–808

    Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    PubMed  Google Scholar 

  • Wu F, Fang Q, Yan S, Pan L, Tang X, Ye W (2020) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27:26974–26981

    Google Scholar 

  • Yang C, Dolatabadian A, Fernando WD (2022) The wonderful world of intrinsic and intricate immunity responses in plants against pathogens. Can J Plant Pathol 44:1–20

    Google Scholar 

  • Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ul-Allah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhammad, S. et al. (2023). Crop Responses to Metal Toxicity. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_10

Download citation

Publish with us

Policies and ethics