Skip to main content

Crop Plants Under Metal Stress and Its Remediation

  • Chapter
  • First Online:
Plant Stress: Challenges and Management in the New Decade

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Soil contamination with heavy metals is a huge concern now. Agricultural soils in the world are slight to moderately affected by heavy metal toxicity. Heavy metals such as cadmium, arsenic, chromium, lead, mercury, and iron are highly toxic and increased accumulation can lead to degradation of the ecosystem. A higher concentration of heavy metals in agricultural soils has tremendous detrimental effects on plant growth and food safety. The primary hazard in plants exposed to these metals lie in oxidative damage due to their ability to produce reactive oxygen species which consequently cause lipid peroxidation, enzyme inactivation, damage to cellular organelles, and DNA. Unfortunately, metals such as mercury, cadmium, lead, iron, etc. are essential for plant growth, but excess of them triggers oxidative damage in the plant. The prime objective of this chapter is to discuss the effects of heavy metals on plant growth, development and yield and to summarize the economical and eco-friendly remediation measures that increase the tolerance of plants to heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

CEC:

Cation exchange capacity

DAP:

Di-ammonium phosphate

DOC:

Dissolved organic carbon

DTPA:

Diethylenetriamine pentaacetic acid

GR:

Glutathione reductase

H2O2:

Hydrogen peroxide

O2:

Superoxide radical

OH:

Hydroxyl radical

OM:

Organic matter

ROS:

Reactive oxygen species (ROS)

SOD:

Superoxide dismutase (SOD)

References

  • Abbas SH, Ismail IM, Mostafa TM et al (2014) Biosorption of heavy metals: a review. J of Chem Sci 3(4):74–19

    Google Scholar 

  • Abioye OP, Oyewole OA, Oyeleke SB et al (2018) Biosorption of lead, chromium and cadmium in tannery effluent using indigenous microorganisms. Braz J Biol Sci 5(9):25–32

    Google Scholar 

  • Ahirwar NK, Gupta G, Singh R et al (2016) Isolation, identification and characterization of heavy metal resistant bacteria from industrial affected soil in central India. Int J Pure Appl Biosci 4(6):88–93

    Google Scholar 

  • Ahmed SFR, Killham K, Alexander I (2006) Influences of arbuscular fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33–41

    Google Scholar 

  • Alamgir M, Islam MgK (2011) Effects of farm yard manure on cadmium and lead accumulation in Amaranth (Amaranthus oleracea L.). J Soil Sci Environ Manage 2(8):237–240

    Google Scholar 

  • Alvarenga P, Goncalves AP, Fernandes RM et al (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:292–1300

    Google Scholar 

  • Anjum NA, Singh HP, Khan MIR et al (2015) Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    CAS  Google Scholar 

  • Arduini I, Masoni A, Ercoli L (2006) Effects of high chromium applications on Miscanthus during the period of maximum growth. Environ Exp Bot 58:234–243

    CAS  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidant systems in plants. Curr Sci 82:1227–1338

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1998) Toxicological profile for chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  • Audebert A, Sahrawat KL (2000) Mechanisms for iron toxicity tolerance in lowland rice. J Plant Nutr 23:1877–1885

    CAS  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:268–273

    Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM et al (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64

    CAS  PubMed  Google Scholar 

  • Becker M, Asch F (2005) Iron toxicity in rice—conditions and management concepts. J Plant Nutr Soil Sci 168:558–573

    CAS  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480

    CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    CAS  PubMed  Google Scholar 

  • Bergqvist C, Herbert R, Persson I (2014) Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables. Environ Pollut 184:540–546

    CAS  PubMed  Google Scholar 

  • Bernal MP, Clemente R, Walker DJ (2007) The role of organic amendments in the bioremediation of heavy metal-polluted soils. In: Gore RW (ed) Environmental research at the leading edge. Nova Science Publishers Inc., New York

    Google Scholar 

  • Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82(8):493–512

    CAS  PubMed  Google Scholar 

  • Bolan NS, Kunhikrishnan A, Thangarajan R et al (2014) Remediation of heavy metal(loid)s contaminated soils—to mobilize or to immobilize? J Hazard Mater 266:141–166

    CAS  PubMed  Google Scholar 

  • Butler TJ, Han KJ, Muir JP et al (2008) Dairy manure compost effects on corn silage production and soil properties. Agron J 100:1541–1545

    Google Scholar 

  • Cao X, Ma LQ, Shiralipour A (2003) Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ Pollut 126:157–167

    CAS  PubMed  Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    CAS  PubMed  Google Scholar 

  • Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283(4):287–294

    CAS  PubMed  Google Scholar 

  • Chang YC, Zouari M, Gogorcena Y, Lucena JJ, Abadía J (2003) Effects of cadmium and lead on ferric chelate reductase activities in sugar beet roots. Plant Physiol Biochem 41:999–1005

    CAS  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P et al (2004) Detrimental effects of lead phytotoxicity on growth, yield and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

    CAS  Google Scholar 

  • Chatterjee S, Chatterjee NC, Dutta S (2012) Bioreduction of chromium (VI) to chromium (III) by a novel yeast strain Rhodotorula mucilaginosa (MTCC 9315). Afr J Biotechnol 11(83):14920–14929

    CAS  Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. Biometals 25:847–857

    Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Cosmochim Acta 72:1598–1610

    CAS  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    CAS  PubMed  Google Scholar 

  • Clark GJ, Dodgshun N, Sale PWG et al (2007) Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol Biochem 39:2806–2817

    CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662

    CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    CAS  PubMed  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477

    CAS  Google Scholar 

  • Dias JM, McmA-F Almeida MF, Rivera-Utrilla J et al (2007) Waste materials or activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage 85:833–846

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    CAS  Google Scholar 

  • Dotaniya ML, Meena Vd, Das H (2014) Chromium toxicity on seed germination, root elongation and coleoptile growth if pigeon pea (Cajanus cajan). Legume Res 37(2):227–229

    Google Scholar 

  • Du X, Zhu Y-G, Liu W-J et al (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7

    CAS  Google Scholar 

  • Du Y, Hu XF, Wu XH et al (2013) Effects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 185:9843–9856

    CAS  PubMed  Google Scholar 

  • Dufey IX, Draye S, Lutts M et al (2015) Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica 204:609–625

    CAS  Google Scholar 

  • Ertani A, Mietto A, Borin M et al (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut 228(5):190

    Google Scholar 

  • Fageria NK, Santos AB, Filho MP et al (2008) Iron toxicity in lowland rice. J Plant Nutr 31:1676–1697

    CAS  Google Scholar 

  • Fahr M, Laplaze L, Bendaou N et al (2013) Effect of lead on root growth. Front Plant Sci 4:1–7

    Google Scholar 

  • Ferraz P, Fidalgo F, Almeida A et al (2012) Phytostabilization of nickel by the zinc and cadmium hyperaccumulator Solanum nigrum L. Are metallothioneins involved? Plant Physiol Biochem 57:254–260

    CAS  PubMed  Google Scholar 

  • Filho JR, Corte VB, Perin ITAL et al (2020) Effects of iron toxicity on germination and initial growth of Carica papaya L. Scientia Plena 16:(10)

    Google Scholar 

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3(182)

    Google Scholar 

  • Fozia A, Muhammad AZ, Muhammad A et al (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci 20:1475–1480

    CAS  Google Scholar 

  • Fu YQ, Li S, Zhu HY et al (2012) Biosorption of copper (II) from aqueous solution by mycelial pellets of Rhizopus oryzae. Afr J Biotechnol 11(6):1403–1411

    CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA et al (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    CAS  Google Scholar 

  • Gautam M, Sengar RS, Chaudhary R et al (2010) Possible cause of inhibition of seed germination in two rice cultivars by heavy metals Pb2+ and Hg2+. Environ Toxicol Chem 92:1111–1119

    CAS  Google Scholar 

  • Ge C, Ding Y, Wang Z et al (2009) Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci 21:806–813

    CAS  Google Scholar 

  • Gercel O, Gercel HF (2007) Adsorption of lead (II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132:289–297

    CAS  Google Scholar 

  • Gill M (2014) Heavy metal stressin plants: a review. Int J Adv Res 2(6):1043–1055

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gondar D, Bernal MP (2009) Copper binding by olive mill solid waste and its organic matter fractions. Geoderma 149:272–279

    CAS  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    CAS  PubMed  Google Scholar 

  • Gottesfeld P, Were FH, Adogame L et al (2018) Soil contamination from lead battery manufacturing and recycling in seven African countries. Environ Res 161:609–614

    CAS  PubMed  Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Google Scholar 

  • Hadi F (2015) A mini review on lead toxicity in plants. J Biol Sci 6:91–101

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    CAS  PubMed  Google Scholar 

  • Han FX, Banin A, Su Y et al (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89:497–504

    CAS  PubMed  Google Scholar 

  • Haque Md N, Ali Md H, Roy TS (2015) Yield reduction and arsenic accumulation in potatoes (Solanum tuberosum L.) in an arsenic contaminated soil. Agron Colomb 33(3):315–321

    Google Scholar 

  • Hartley W, Dickinson NM, Riby P et al (2010) Arsenic mobility and speciation in a contaminated urban soil are affected by different methods of green waste compost application. Environ Pollut 158:3560–3570

    CAS  PubMed  Google Scholar 

  • He S, Yang X, He Z et al (2017) Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421–438

    CAS  Google Scholar 

  • Hong CO, Chung DY, Lee DK et al (2010) Comparison of phosphate materials for immobilizing cadmium in soil. Arch Environ Contam Toxicol 58:268–274

    CAS  PubMed  Google Scholar 

  • Hussain A, Abbas N, Arshad F et al (2013) Effects of diverse doses of lead (Pb) on different growth attributes of Zea Mays L. Agric Sci 4:262–265

    Google Scholar 

  • Igiri BE, Okoduwa SI, Idoko GO et al (2018) Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. https://doi.org/10.1155/2018/2568038

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MM, Hoque MdA, Okuma E et al (2009) Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597

    CAS  PubMed  Google Scholar 

  • Jaja ET, Odoemena CSI (2004) Effect of Pb, Cu and Fe compounds on the germination and early seedling growth of tomato varieties. J Appl Sci Environ Manag 8(2):51–53

    CAS  Google Scholar 

  • Jaleel CA, Jayakumar K, Xing ZC et al (2009) Antioxidant potentials protect Vigna radiata (L.) Wilczek plants from soil cobalt stress and improve growth and pigment composition. Plant Omics 2:120–126

    Google Scholar 

  • Jin XF, Yang XE, Ejazul I et al (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397

    CAS  PubMed  Google Scholar 

  • Jun R, Ling T, Guanghua Z (2009) Effects of chromium on seed germination, root elongation and coleoptiles growth in six pulses. Int J Environ Sci Technol 6:571–578

    CAS  Google Scholar 

  • Kader J, Sannasi P, Othman O et al (2007) Removal of Cr (VI) from aqueous solutions by growing and non-growing populations of environmental bacterial consortia. Glob J Environ Res 1(1):12–17

    Google Scholar 

  • Kaitibie S, Epplin FM, Krenzer EG et al (2002) Economics of lime and phosphorus application for dual purpose winter wheat production in low pH soils. Agron J 94:1139–1145

    Google Scholar 

  • Kammann CI, Schmidt HP, Messerschmidt N et al (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Report 5:11080

    Google Scholar 

  • Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 122:297–303

    CAS  Google Scholar 

  • Khan AG, Bari A, Chaudhry TM et al (1997) Phytoremediation-a strategy to decontaminate heavy metal polluted soils and to conserve the biodiversity of Pakistan soils. In: Mufti SA, Woods CA, Hasan SA (eds) Biodiversity of Pakistan museum of natural history. Islamabad and Florida Museum of Natural History

    Google Scholar 

  • Khan MJ, Jones DL (2008) Chemical and organic immobilizing treatments for reducing phytoavailability of heavy metals in copper mine tailings. J Plant Nutr Soil Sci 171:908–916

    CAS  Google Scholar 

  • Kibria M, Maniruzzaman M, Islam M et al (2010) Effects of soil applied lead on growth and partitioning of ion concentration in Spinacea oleracea L. tissues. Soil Environ 29:1–6

    CAS  Google Scholar 

  • Kim HS, Seo BH, Bae JS et al (2016) An integrated approach to safer plant production on metal contaminated soils using species selection and chemical immobilization. Ecotoxicol Environ Saf 131:89–95

    CAS  PubMed  Google Scholar 

  • Kisielowska E, Hołda A, Niedoba T (2010) Removal of heavy metals from coal medium with application of biotechnological methods. Górnictwo I Geoinzynieria 34:93–104

    Google Scholar 

  • Kosolsaksakul P, Farmer JG, Oliver IW et al (2014) Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ Pollut 187:153–161

    CAS  PubMed  Google Scholar 

  • Kumar V, Suryakant SPK et al (2016) Effect of chromium toxicity on plants: a review. Agroways 4(1):107–120

    CAS  Google Scholar 

  • üKüpper H, Lombi E, Zhao FJ et al (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Google Scholar 

  • Kushwaha A, Hans N, Kumar S et al (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    CAS  PubMed  Google Scholar 

  • Lakkireddy K, Kües U (2017) Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations. AMB Express 7(1):28

    PubMed  PubMed Central  Google Scholar 

  • Lima IM, Marshall WE (2005) Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons. J Chem Technol Biotechnol 80:1054–1061

    CAS  Google Scholar 

  • Lin YW, Liu TS, Guo HY et al (2015) Relationships between Cd concentrations in different vegetables and those in arable soils, and food safety evaluation of vegetables in Taiwan. Soil Sci Plant Nutr 61(6):983–998

    CAS  Google Scholar 

  • Lindberg S, Bullock R, Ebinghaus R et al (2007) A synthesis of progress and uncertainties in attributing the source of mercury in deposition. Ambio 36:19–32

    CAS  PubMed  Google Scholar 

  • Liu L, Chen H, Cai P et al (2009) Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 163:563–567

    CAS  PubMed  Google Scholar 

  • Liu SL, Shi XS, Pan YZ et al (2013) Effects of cadmium stress on growth, accumulation and distribution of biomass and nutrient in Catharanthus roseus. Acta Prataculturae Sin 22:154–161

    Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ Prot 102:558–566

    CAS  Google Scholar 

  • Lwin CS, Seo BH, Kim HU et al (2018) Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—a critical review. Soil Sci Plant Nutr 64(2):156–167

    CAS  Google Scholar 

  • Mahender A, Swamy B, Anandan A et al (2019) Tolerance of iron-deficient and toxic soil conditions in rice. Plants 8:1–34

    Google Scholar 

  • Maier MV, Wolter Y, Zentler D et al (2019) Phosphate induced arsenic mobilization as a potentially effective in-situ remediation technique—preliminary column tests. Water 11(11):2364

    CAS  Google Scholar 

  • Malecka A, Piechalak A, Morkunas I et al (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637

    CAS  Google Scholar 

  • Mangabeira PA, Gavrilov KL, de Almeida AAF et al (2014) The effectiveness of the stabilization/solidification process on the leachability and toxicity of the tannery sludge chromium. J Environ Manage 143:71–79

    Google Scholar 

  • Mann S, Rate A, Gilkes R (2002) Cadmium accumulation in agricultural soils in Western Australia. Water Air Soil Pollut 141:281–297

    CAS  Google Scholar 

  • Martinez F, Cuevas G, Calvo R et al (2003) Biowaste effects on soil and native plants in a semiarid ecosystem. J Environ Qual 32:472–479

    CAS  PubMed  Google Scholar 

  • Meharg AA, Lombi E, Williams PN et al (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42:1051–1057

    CAS  PubMed  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222

    CAS  Google Scholar 

  • Misra P, Nath K, Tandon PK (2010) Effect of heavy metals (Ni and Pb) stress on sugarcane (Saccharum officinarum L.). Res Environ Life Sci 3:183–188

    Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 33(11):1917–1926

    CAS  Google Scholar 

  • Mondol SC, Sarma B, Farooq M et al (2020) Cadmium bioavailability in acidic soils under bean cultivation: role of soil additives. Int J Environ Sci Technol 17:153–160

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00303

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A et al (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489

    Google Scholar 

  • Nicholson F, Smith S, Alloway B et al (2003) An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci Total Environ 311:205–219

    CAS  PubMed  Google Scholar 

  • Onaga G, Drame KN, Ismail AM (2016) Understanding the regulation of iron nutrition: can it contribute to improving iron toxicity tolerance in rice. Funct Plant Biol 43:709–726

    CAS  PubMed  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paraskeva P, Kalderis D, Diamadopoulos E (2008) Production of activated carbon from agricultural by-products. J Chem Technol Biotechnol 83:581–592

    CAS  Google Scholar 

  • Park D, Yun YS, Jo JH et al (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39(4):533–540

    CAS  PubMed  Google Scholar 

  • Park JH, Choppala G, Bolan NS et al (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451

    CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B et al (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    CAS  Google Scholar 

  • Puyen ZM, Villagrasa E, Maldonado J et al (2012) Biosorption of lead and copper by heavy-metal tolerant Micrococcus luteus DE2008. Bioresour Technol 126:233–237

    CAS  PubMed  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    CAS  Google Scholar 

  • Qazilbash AA (2004) Isolation and characterization of heavy metal tolerant biota from industrially polluted soils and their role in bioremediation [Doctoral dissertation]. Quaid-i-Azam University Islamabad

    Google Scholar 

  • Rabêlo FHS, Azevedo RA, Monteiro FA (2017) The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania Guinea grass used for Cd phytoextraction. Water Air Soil Pollut 228(10):394. https://doi.org/10.1007/s11270-017-3563-6

    Article  CAS  Google Scholar 

  • Raj D, Maiti SK (2019) Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: a case study from a thermal power plant, Chandrapura, India. Rend Lincei Sci Fis Nat 30:649–665

    Google Scholar 

  • Rasheed A, Hassan MU, Aamer M et al (2020) Iron toxicity, tolerance and quantitative trait loci mapping in rice: a review. Appl Ecol Environ Res 18(6):7483–7498

    Google Scholar 

  • Raziuddin F, Akmal M, Shah SS et al (2011) Effects of cadmium and salinity on growth and photosynthetic parameters of brassica species. Pak J Bot 43(1):333–340

    CAS  Google Scholar 

  • Rehman MZU, Rizwan M, Ali S et al (2017) Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat. Bull Environ Contam Toxicol 99:642–647

    Google Scholar 

  • Sabir M, Hanafi MM, Aziz T et al (2013) Comparative effect of activated carbon, pressmud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. Int J Agric Biol 15:559–564

    CAS  Google Scholar 

  • Sahrawat KL (2010) Reducing iron toxicity in lowland rice with tolerant genotypes and plant nutrition. Plant Stress 4:70–75

    Google Scholar 

  • Sannasi P, Kader J, Othman O et al (2006) Single and multi‐metal removal by an environmental mixed bacterial isolate. In: Modern multidisciplinary applied microbiology: exploiting microbes and their interactions, pp 136–141

    Google Scholar 

  • Schiavon M, Agostini G, Pittarello M et al (2009) Interactions between chromate and sulfate affect growth, photosynthesis and ultrastructure in Brassica juncea (L.) Czern. In: Sirko A, De Kok LJ, Haneklaus S et al (eds) Sulfur metabolism in plants. Backhuys publishers, Leiden; Margraf publishers, Weikersheim

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    PubMed  Google Scholar 

  • Scoccianti V, Iacobucci M, Paoletti MF et al (2008) Species dependent chromium accumulation, lipid peroxidation, and glutathione levels in germinating kiwifruit pollen under Cr(III) and Cr(VI) stress. Chemosphere 73:1042–1048

    CAS  PubMed  Google Scholar 

  • Shahid M, Javed MT, Mushtaq A et al (2019) Microbe-mediated mitigation of cadmium toxicity in plants. In: Cadmium toxicity and tolerance in plants, pp 427–449. https://doi.org/10.1016/B978-0-12-814864-8.00017-6

  • Shaibur MR, Kitajima N, Sugewara R et al (2008) Critical toxicity of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic Sorghum. Water Air Soil Pollut 191:279–292

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Tavera HL et al (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  PubMed  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium in plants: current status and future strategies. Metallomics 1:375–383

    CAS  PubMed  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    CAS  Google Scholar 

  • Shekar CC, Sammaiah D, Shasthree T et al (2011) Effect of mercury on tomato growth and yield attributes. Int J Pharma Bio Sci 2(2):358–364

    CAS  Google Scholar 

  • Shiyab S, Chen J, Han FX et al (2009) Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.). Environ Toxicol 2:462–471

    Google Scholar 

  • Shua WS, Ye ZH, Lan CY et al (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120(2):445–453

    Google Scholar 

  • Siddiquee S, Rovina K, Azad SA et al (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7(6):384–395

    CAS  Google Scholar 

  • Sidhu GPS, Singh HP, Batish DR et al (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotoxicol Environ Saf 135:209–215

    CAS  PubMed  Google Scholar 

  • Smith SE, Christophersen HM, Pope S et al (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N et al (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P et al (2009) Comparitive biochemical and transcriptional profiling of two contrasting varieties of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 181:1–13

    Google Scholar 

  • Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22(20):15386–15415

    Google Scholar 

  • Srivastava, S, Thakur IS (2006) Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent. Bioresour Technol 97(10):1167–1173

    Google Scholar 

  • Srivastava D, Tiwari M, Dutta P et al (2021) Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability 13:4629

    Google Scholar 

  • Stoeva N, Tz B (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Plant 47(3):449–452

    Google Scholar 

  • Su C (2014) A review on heavy metal contamination in the soil worldwide: situation, impact and remediation techniques. Environ Skep Crit 3(2):24–38

    Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS et al (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333(8):597–607

    CAS  PubMed  Google Scholar 

  • Syed R, Kapoor D, Bhat AA (2018) Heavy metal toxicity in plants: a review. Plant Arch 18(2):1229–1238

    Google Scholar 

  • Sytar O, Kumar A, Latowski D et al (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999

    CAS  Google Scholar 

  • Tarekeng MM, Salilih FZ, Ishetu AI (2020) Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric 6(1).  https://doi.org/10.1080/23311932.2020.1783174

  • Tiwari S, Singh SN, Garg SK (2013) Microbially enhanced phytoextraction of heavy-metal fly-ash amended soil. Commun Soil Sci Plant Anal 44(21):3161–3176

    CAS  Google Scholar 

  • Tlustoš P, Száková J, Kořínek K et al (2006) The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ 52(1):16–24

    Google Scholar 

  • Tsunematsu S, Uematsu E, Saito K et al (2012) Immobilization of arsenic in natural soils by gypsum powder, mechanistic interpretations. Trans Japanese Soc Irrigation, Drainage Rural Eng 80:141–150

    Google Scholar 

  • VanHerwijnen R, Hutchings TR, AlTabbaa A et al (2007) Remediation of metal contaminated soil with mineral-amended composts. Environ Pollut 150:347–354

    CAS  Google Scholar 

  • Vink JPM, Harmsen J, Rijnaarts H (2010) Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. J Soils Sediments 10:1633–1645

    CAS  Google Scholar 

  • Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224

    Google Scholar 

  • Wang YD (2004) Phytoremediation of mercury by terrestrial plants. Stockholm University, Sweden, Department of Botany, PhD

    Google Scholar 

  • Wang YD, Greger M (2004) Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual 33:1779–1785

    CAS  PubMed  Google Scholar 

  • WHO (1996) Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva, Switzerland

    Google Scholar 

  • Wyszkowski M, Radziemska M (2010) Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J Toxicol Environ Health Part A 73:1274–1282

    CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    CAS  Google Scholar 

  • Yamauchi M, Peng XX (1995) Iron toxicity and stress-induced ethylene production in rice leaves. Plant Soil 173:21–28

    CAS  Google Scholar 

  • Yang Y, Wei X, Lu J et al (2010) Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 73:1982–1987

    CAS  PubMed  Google Scholar 

  • Yokel J, Delistraty DA (2003) Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environ Toxico 18:104–114

    CAS  Google Scholar 

  • Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

  • Zhang W, Pana X, Zhao Q et al (2021) Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides. Hortic Plant J 7(3):256–266

    CAS  Google Scholar 

  • Zhao YY, Hu CX, Wang X et al (2019) Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. pekinensis) by regulating root morphology and metal element uptake. Ecotoxicol Environ Saf 114:179–189

    Google Scholar 

  • Zulfiqar U, Farooq M, Hussain S et al (2019) Lead toxicity in plants: impacts and remediation. J Environ Manage 250:109557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, B., Gogoi, L., Gogoi, N., Kataki, R. (2022). Crop Plants Under Metal Stress and Its Remediation. In: Roy, S., Mathur, P., Chakraborty, A.P., Saha, S.P. (eds) Plant Stress: Challenges and Management in the New Decade. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-95365-2_3

Download citation

Publish with us

Policies and ethics