Skip to main content

Advanced Imaging in Congenital Abnormalities of Coronary Arteries in Children

  • Chapter
  • First Online:
Congenital Anomalies of Coronary Arteries

Abstract

Over recent years, non-invasive imaging of the coronary arteries in children has improved significantly due to technological advances in imaging techniques, particularly echocardiography and CT angiography reserving gold-standard invasive coronagraphy for very small proportion of cases. Visualisation of the coronary arteries in a fetus is now possible in real-time 2D echocardiography and colour Doppler mapping, and a high diagnostic accuracy of transthoracic echocardiography in children resulted in increased frequency of diagnosis of congenital coronary abnormalities, even in asymptomatic patients and often with an uncertain impact on long-term outcome. Intraoperative (transthoracic and epicardial) echocardiography became a standard imaging modality to ascertain the immediate result of operation by high-resolution echocardiography and Doppler flow analysis. Coronary CT angiography has undergone technological progress that had led to ultra-fast acquisition and high spatial resolution imaging of the coronary arteries at an ever-lower radiation exposure, providing detailed three-dimensional imaging of the coronary arterial morphology, lumen, and surrounding structures. As a result, CT angiography is now a mainstay in the diagnosis of coronary arterial disease in children. Progresses in images have played a pivotal role in the development of new applications such as virtual reality and advanced modelling and simulations. Such advances hold great potential as valuable complementary tools in the anatomical and functional assessment of coronary arterial disease in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai WW, Geva T, Shirali GS, Frommelt PC, Humes RA, Brook MM, et al. Guidelines and standards for performance of a pediatric echocardiogram: a report from the Task Force of the Pediatric Council of the Journal of the American Society of Echocardiography Volume 33 Number 3 Frommelt et al 289American Society of Echocardiography. J Am Soc Echocardiogr. 2006;19:1413–30.

    Article  Google Scholar 

  2. Frommelt P, Lopez L, Dimas VV, Eidem B, Han BK, Ko HH, Lorber R, Nii M, Printz B, Srivastava B, Valente AV, Cohen MS. Recommendations for multimodality assessment of congenital coronary anomalies: a guide from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2020;33(3):259–94.

    Article  Google Scholar 

  3. Brown LM, Duffy CE, Mitchell C, Young L. A practical guide to pediatric coronary artery imaging with echocardiography. J Am Soc Echocardiogr. 2015;28(4):379–91.

    Article  Google Scholar 

  4. Fuse S, Kobayashi T, Arakaki Y, Ogawa S, Katoh H, Sakamoto N, Hamaoka K, Saji T. Standard method for ultrasound imaging of coronary artery in children. Pediatr Int. 2010;52(6):876–82.

    Article  Google Scholar 

  5. Naqvi N, Babu-Narayan SV, Krupickova S, Muthialu N, Maiya S, Chandershekar P, Cheang MH, Kostolny M, Tsang V, Marek J. myocardial function following repair of anomalous origin of left coronary artery from the pulmonary artery in children. J Am Soc Echocardiogr. 2020;33(5):622–30.

    Article  Google Scholar 

  6. Lorber R, Srivastava S, Wilder TJ, McIntyre S, DeCampli WM, Williams WG, Frommelt PC, Parness IA, Blackstone EH, Jacobs ML, Mertens L, Brothers JA. Herlong JR; AAOCA working Group of the Congenital Heart Surgeons Society. Anomalous aortic origin of coronary arteries in the Young: echocardiographic evaluation with surgical correlation. JACC Cardiovasc Imaging. 2015;8(11):1239–49.

    Article  Google Scholar 

  7. Sharland GK, Konta L, Qureshi SA. Prenatal diagnosis of isolated coronary artery fistulas: progression and outcome in five cases. Cardiol Young. 2016;26(5):915–20.

    Article  Google Scholar 

  8. Liu L, Wang H, Cui C, Li Y, Liu Y, Wang Y, Fan T, Peng B. Prenatal echocardiographic classification and prognostic evaluation strategy in fetal pulmonary atresia with intact ventricular septum. Medicine (Baltimore). 2019;98(42):e17492.

    Article  Google Scholar 

  9. Baschat AA, Muench MV, Gembruch U. Coronary artery blood flow velocities in various fetal conditions. Ultrasound Obstet Gynecol. 2003;21(5):426–9.

    Article  CAS  Google Scholar 

  10. Vargas LA, Dyar DA, Davis CK, Dummer KB. Prenatal detection of anomalous right coronary artery with an interarterial course. CASE (Phila). 2019;4(2):63–5.

    Google Scholar 

  11. Stoebe S, Lange K, Pfeiffer D, Hagendorff A. Feasibility of proximal right coronary artery imaging by 2D and 3D echocardiography in comparison to coronary angiography. Echo Res Pract. 2015;2(3):73–9.

    Article  Google Scholar 

  12. Bonello B, Bo I, Mortensen K, Banks RL, Mc Leod IW, Kaski JP, Hsia TY, Marek J. Value of Stress transesophageal echocardiography in an asymptomatic patient with single coronary artery from noncoronary sinus, intramural course, and ostial stenosis. Circ Cardiovasc Imaging. 2019;12(1):e008560.

    Article  Google Scholar 

  13. Dragulescu A, Golding F, Van Arsdell G, Caldarone C, Mertens L, Al-Radi O, Lee KJ. The impact of additional epicardial imaging to transesophageal echocardiography on intraoperative detection of residual lesions in congenital heart surgery. Cardiovasc Surg. 2012;143(2):361–7.

    Google Scholar 

  14. Nield LE, Dragulescu A, MacColl C, Manlhiot C, Brun H, McCrindle BW, Kuipers B, Caldarone CA, Miner SES, Mertens L. Coronary artery Doppler patterns are associated with clinical outcomes post-arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging. 2018;19(4):461–8.

    Article  Google Scholar 

  15. Awasthy N, Girotra S, Dutta N, Azad S, Radhakrishnan S, Iyer KS. A systematic approach to epicardial echocardiography in pediatric cardiac surgery: an important but underutilized intraoperative tool. Ann Pediatr Cardiol. 2021;14(2):192–200.

    Article  Google Scholar 

  16. Sang CJ 3rd, Prejean S, Von Mering G, Ahmed M, Law MA. Intravascular ultrasound use for stent optimization during percutanous coronary intervention in a toddler with post-surgical stenosis after coronary reimplantation for ALCAPA. J Cardiol Cases. 2020;22(2):77–80.

    Article  Google Scholar 

  17. Agrawal H, Molossi S, Alam M, Sexson-Tejtel SK, Mery CM, McKenzie ED, Fraser CD Jr, Qureshi AM. Anomalous coronary arteries and myocardial bridges: risk stratification in children using novel cardiac catheterization techniques. Pediatr Cardiol. 2017;38(3):624–30. https://doi.org/10.1007/s00246-016-1559-4.

    Article  Google Scholar 

  18. McElhinney DB. Direct physiologic assessment of anomalous aortic origin of a coronary artery: Enhanced diagnostics or illusion of insight? Catheter Cardiovasc Interv. 2018;92(1):76–7.

    Article  Google Scholar 

  19. Angelini P, Velasco JA, Ott D, Khoshnevis GR. Anomalous coronary artery arising from the opposite sinus: descriptive features and pathophysiologic mechanisms, as documented by intravascular ultrasound. J Invasive Cardiol. 2003;15:207–14.

    Google Scholar 

  20. Costello JM, Wax DF, Binns HJ, Backer CL, Mavroudis C, Pahl E. A comparison of intravascular ultrasound with coronary angiography for evaluation of transplant coronary disease in pediatric heart transplant recipients. J Heart Lung Transplant. 2003;22(1):44–9.

    Article  Google Scholar 

  21. Auerbach SR, Fenton MJ, Grutter G, Albert DC, Di-Filippo S, Burch M, Kuhn MA. The complication rate of intravascular ultrasound (IVUS) in a multicenter pediatric heart transplant population: A study of the international pediatric IVUS consortium. Clin Transpl. 2020;34(9):e13981.

    Article  Google Scholar 

  22. Driesen BW, Warmerdam EG, Sieswerda GT, Schoof PH, Meijboom FJ, Haas F, Stella PR, Kraaijeveld AO, Evens FCM, Doevendans PAFM, Krings GJ, van Dijk APJ, Voskuil M. Anomalous coronary artery originating from the opposite sinus of Valsalva (ACAOS), fractional flow reserve- and intravascular ultrasound-guided management in adult patients. Catheter Cardiovasc Interv. 2018;92(1):68–75.

    Article  Google Scholar 

  23. Watanabe M, Fukazawa R, Ogawa S, Ohkubo T, Abe M, Hashimoto K, Hashimoto Y, Itoh Y. Virtual histology intravascular ultrasound evaluation of coronary artery lesions within 1 year and more than 10 years after the onset of Kawasaki disease. J Cardiol. 2020;75(2):171–6.

    Article  Google Scholar 

  24. Cifra B, Dragulescu A, Border WL, Mertens L. Stress echocardiography in paediatric cardiology. Eur Heart J Cardiovasc Imaging. 2015;16(10):1051–9.

    Article  Google Scholar 

  25. Ciliberti P, McLeod I, Cairello F, Kaski JP, Fenton M, Giardini A, Marek J. Semi-supine exercise stress echocardiography in children and adolescents: feasibility and safety. Pediatr Cardiol. 2015;36(3):633–9.

    Article  CAS  Google Scholar 

  26. Binka E, Zhao N, Wood S, Zimmerman SL, Thompson WR. Exercise-induced abnormalities of regional myocardial deformation in anomalous aortic origin of the right coronary artery. World J Pediatr Congenit Heart Surg. 2020;11(6):712–9.

    Article  Google Scholar 

  27. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, del Nido P, Fasules JW, Graham TP Jr, Hijazi ZM, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Buller CE, Creager MA, Ettinger SM, Halperin JL, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura RA, Page RL, Riegel B, Tarkington LG, Yancy CW. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52:e143–263.

    Article  Google Scholar 

  28. Cheng Z, Wang X, Duan Y, Wu L, Wu D, Chao B, Liu C, Xu Z, Li H, Liang F, Xu J, Chen J. Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience. Eur Radiol. 2010;20:2503–11.

    Article  Google Scholar 

  29. Han BK, Lindberg J, Overman D, Schwartz RS, Grant K, Lesser JR. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6:252–9.

    Article  Google Scholar 

  30. Beerbaum P, Sarikouch S, Laser KT, Greil G, Burchert W, Körperich H. Coronary anomalies assessed by whole-heart isotropic 3D magnetic resonance imaging for cardiac morphology in congenital heart disease. J Magnetic Resonance Imaging. 2009;29:320–7.

    Article  Google Scholar 

  31. Goo HW. Coronary artery imaging in children. Korean J Radiol. 2015;16:239–50.

    Article  Google Scholar 

  32. Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF. Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology. 2011;259:240–7.

    Article  Google Scholar 

  33. Rajiah P, Setser RM, Desai MY, Flamm SD, Arruda JL. Utility of free-breathing, whole-heart, three-dimensional magnetic resonance imaging in the assessment of coronary anatomy for congenital heart disease. Pediatr Cardiol. 2011;32:418–25.

    Article  Google Scholar 

  34. Tada A, Sato S, Kanie Y, Tanaka T, Inai R, Akagi N, Morimitsu Y, Kanazawa S. Image quality of coronary computed tomography angiography with 320-row area detector computed tomography in children with congenital heart disease. Pediatr Cardiol. 2016;37:497–503.

    Article  Google Scholar 

  35. Kanie Y, Sato S, Tada A, Kanazawa S. Image quality of coronary arteries on non-electrocardiography-gated high-pitch dual-source computed tomography in children with congenital heart disease. Pediatr Cardiol. 2017;38:1393–9.

    Article  Google Scholar 

  36. Nie P, Wang X, Cheng Z, Ji X, Duan Y, Chen J. Accuracy, image quality and radiation dose comparison of high-pitch spiral and sequential acquisition on 128-slice dual-source CT angiography in children with congenital heart disease. Eur Radiol. 2012;22:2057–66.

    Article  Google Scholar 

  37. Yu FF, Lu B, Gao Y, Hou ZH, Schoepf UJ, Spearman JV, Cao HL, Sun ML, Jiang SL. Congenital anomalies of coronary arteries in complex congenital heart disease: diagnosis and analysis with dual-source CT. J Cardiovasc Comput Tomogr. 2013;7:383–90.

    Article  Google Scholar 

  38. Goo HW. Identification of coronary artery anatomy on dual-source cardiac computed tomography before arterial switch operation in newborns and young infants: comparison with transthoracic echocardiography. Pediatr Radiol. 2018;48:176–85.

    Article  Google Scholar 

  39. Han BK, Rigsby CK, Hlavacek A, Leipsic J, Nicol ED, Siegel MJ, Bardo D, Abbara S, Ghoshhajra B, Lesser JR, Raman S, Crean AM. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the north American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9:475–92.

    Article  Google Scholar 

  40. Mortensen KH, Tann O. Computed tomography in paediatric heart disease. Br J Radiol. 2018;91:20180201.

    Article  Google Scholar 

  41. Rigsby CK, deFreitas RA, Nicholas AC, Leidecker C, Johanek AJ, Anley P, Wang D, Uejima T. Safety and efficacy of a drug regimen to control heart rate during 64-slice ECG-gated coronary CTA in children. Pediatr Radiol. 2010;40:1880–9.

    Article  Google Scholar 

  42. Chen B, Zhao S, Gao Y, Cheng Z, Duan Y, Das P, Wang X. Image quality and radiation dose of two prospective ECG-triggered protocols using 128-slice dual-source CT angiography in infants with congenital heart disease. Int J Card Imaging. 2019;35:937–45.

    Article  CAS  Google Scholar 

  43. Han BK, Overman DM, Grant K, Rosenthal K, Rutten-Ramos S, Cook D, Lesser JR. Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr. 2013;7:354–60.

    Article  Google Scholar 

  44. Zhang W, Bogale S, Golriz F, Krishnamurthy R. Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI. Pediatr Radiol. 2017;47:1588–93.

    Article  Google Scholar 

  45. Araoz PA, Kirsch J, Primak AN, Braun NN, Saba O, Williamson EE, Harmsen WS, Mandrekar JN, McCollough CH. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography. Int J Card Imaging. 2009;25:837–45.

    Article  Google Scholar 

  46. Secinaro A, Curione D, Mortensen KH, Santangelo TP, Ciancarella P, Napolitano C, Del Pasqua A, Taylor AM, Ciliberti P. Dual-source computed tomography coronary artery imaging in children. Pediatr Radiol. 2019;49:1823–39.

    Article  Google Scholar 

  47. Rigsby CK, McKenney SE, Hill KD, Chelliah A, Einstein AJ, Han BK, Robinson JD, Sammet CL, Slesnick TC, Frush DP. Radiation dose management for pediatric cardiac computed tomography: a report from the image gently 'Have-A-Heart' campaign. Pediatr Radiol. 2018;48:5–20.

    Article  Google Scholar 

  48. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796–804.

    Article  Google Scholar 

  49. Krishnamurthy R. Neonatal cardiac imaging. Pediatr Radiol. 2010;40:518–27.

    Article  Google Scholar 

  50. Duan Y, Chen L, Wu D, Chao B, Cheng Z, Yan X, Zhao S, Chen B, Xu M, Wang X, Lu G. Image quality and radiation dose of different scanning protocols in DSCT cardiothoracic angiography for children with tetralogy of fallot. Int J Card Imaging. 2020;36:1791–9.

    Article  Google Scholar 

  51. Agrawal H, Wilkinson JC, Noel CV, Qureshi AM, Masand PM, Mery CM, Sexson-Tejtel SK, Molossi S. Impaired myocardial perfusion on stress CMR correlates with invasive FFR in children with coronary anomalies. J Invasive Cardiol. 2021;33:E45–e51.

    Google Scholar 

  52. Secinaro A, Ntsinjana H, Tann O, Schuler PK, Muthurangu V, Hughes M, Tsang V, Taylor AM. Cardiovascular magnetic resonance findings in repaired anomalous left coronary artery to pulmonary artery connection (ALCAPA). J Cardiovasc Magn Reson. 2011;13:27.

    Article  Google Scholar 

  53. Latus H, Gummel K, Rupp S, Mueller M, Jux C, Kerst G, Akintuerk H, Bauer J, Schranz D, Apitz C. Cardiovascular magnetic resonance assessment of ventricular function and myocardial scarring before and early after repair of anomalous left coronary artery from the pulmonary artery. J Cardiovasc Magn Reson. 2014;16:3.

    Article  Google Scholar 

  54. Browne LP, Kearney D, Taylor MD, Chung T, Slesnick TC, Nutting AC, Krishnamurthy R. ALCAPA: the role of myocardial viability studies in determining prognosis. Pediatr Radiol. 2010;40:163–7.

    Article  Google Scholar 

  55. Doan TT, Molossi S, Sachdeva S, Wilkinson JC, Loar RW, Weigand JD, Schlingmann TR, Reaves-O'Neal DL, Pednekar AS, Masand P, Noel CV. Dobutamine stress cardiac MRI is safe and feasible in pediatric patients with anomalous aortic origin of a coronary artery (AAOCA). Int J Cardiol. 2021;334:42.

    Article  Google Scholar 

  56. Wilkinson JC, Doan TT, Loar RW, Pednekar AS, Trivedi PM, Masand PM, Noel CV. Myocardial stress perfusion MRI using Regadenoson: a weight-based approach in infants and Young children. Radiol Cardiothoracic Imaging. 2019;1:e190061.

    Article  Google Scholar 

  57. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015;275:772–82.

    Article  Google Scholar 

  58. Olivieri L, Cross R, O'Brien KJ, Xue H, Kellman P, Hansen MS. Free-breathing motion-corrected late-gadolinium-enhancement imaging improves image quality in children. Pediatr Radiol. 2016;46:983–90.

    Article  Google Scholar 

  59. Steeden JA, Kowalik GT, Tann O, Hughes M, Mortensen KH, Muthurangu V. Real-time assessment of right and left ventricular volumes and function in children using high spatiotemporal resolution spiral bSSFP with compressed sensing. J Cardiovasc Magn Reson. 2018;20:79.

    Article  Google Scholar 

  60. Steeden JA, Quail M, Gotschy A, Mortensen KH, Hauptmann A, Arridge S, Jones R, Muthurangu V. Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson. 2020;22:56.

    Article  Google Scholar 

  61. Razavi A, Sachdeva S, Frommelt PC, LaDisa JF Jr. Selection of patient-specific boundary conditions with application to anomalous aortic origin of a coronary artery under resting and stress conditions. Bimed Sci Instrument. 2019;55:388–98.

    Google Scholar 

  62. Cong M, Zhao H, Dai S, Chen C, Xu X, Qiu J, Qin S. Transient numerical simulation of the right coronary artery originating from the left sinus and the effect of its acute take-off angle on hemodynamics. Quant Imaging Med Surg. 2021;11(5):2062.

    Article  Google Scholar 

  63. Razavi A, Sachdeva S, Frommelt PC, LaDisa Jr JF. Patient-specific numerical analysis of coronary flow in children with intramural anomalous aortic origin of coronary arteries. In Seminars in thoracic and cardiovascular surgery 2021 (Vol. 33, 1, pp. 155-167). WB Saunders.

    Google Scholar 

  64. Formato GM, Lo Rito M, Auricchio F, Frigiola A, Conti M. Aortic expansion induces lumen narrowing in anomalous coronary arteries: a parametric structural finite element analysis. J Biomech Eng. 2018;140(11):111008.

    Article  Google Scholar 

  65. Hatoum H, Krishnamurthy R, Parthasarathy J, Flemister DC, Krull CM, Walter BA, Mery CM, Molossi S, Dasi LP. Flow Dynamics in Anomalous Aortic Origin of a Coronary Artery in Children: Importance of the Intramural Segment. In: Seminars in thoracic and cardiovascular surgery. WB Saunders; 2020.

    Google Scholar 

  66. Hatoum H, Dasi LP, Krishnamurthy R, Molossi S, Mery CM. Commentary: Computational fluid dynamics in anomalous coronaries: moving from anecdote-based to data-based clinical decision-making. In: Seminars in thoracic and cardiovascular surgery. Elsevier; 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Marek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marek, J., Mortensen, K., Capelli, C. (2023). Advanced Imaging in Congenital Abnormalities of Coronary Arteries in Children. In: Butera, G., Frigiola, A. (eds) Congenital Anomalies of Coronary Arteries. Springer, Cham. https://doi.org/10.1007/978-3-031-36966-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36966-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36965-0

  • Online ISBN: 978-3-031-36966-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics