Skip to main content

Laboratory Findings of NPH

  • Chapter
  • First Online:
Normal Pressure Hydrocephalus

Abstract

Considering the high occurrence of neurodegenerative comorbidities, it is rather challenging to clearly determine the precise diagnosis of normal pressure hydrocephalus (NPH), as well as to predict treatment responsiveness in these patients. Detailed investigation of cerebrospinal fluid (CSF) biomarkers potentially applicable in clinical practice might be particularly useful in the NPH diagnostic battery, together with clinical and radiological findings characteristic of the disease itself. Research has revealed a range of reliable information on the overall CSF profile in iNPH patients, although it is so far impossible to determine a single biomarker specific to NPH. The CSF profile of NPH seems to be easily differentiated from healthy controls; however, the differentiation from other neurodegenerative disorders based only on these parameters remains a challenge. The comorbidities frequently share similar (abnormally raised or abnormally decreased) concentrations of biomarkers in the CSF when compared to iNPH. Although laboratory findings of NPH are not used in current clinical practice, further research may be of great importance to better predict the NPH progression and therefore also to deliver better treatment outcomes and improved prognosis in NPH patients. This chapter summarizes up-to-date conceptions of the topic and provides relevant information discussing and introducing laboratory findings of NPH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

Aβ :

 Amyloid beta

ABC :

 ATP-binding cassette

AMPA :

 α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AQP :

 Aquaporin

APP :

 Amyloid precursor protein

AD :

 Alzheimer’s disease

AUC :

 Area under curve

BBB :

 Blood-brain barrier

CNS :

Central nervous system

CSF :

 Cerebrospinal fluid

CTF :

 C-terminal fragments

CYP450scc :

 Cytochrome P450 cholesterol side-chain cleavage enzyme

DHEA/DHEAS :

 Dehydroepiandrosterone/dehydroepiandrosteronesulphate

FTLD :

 Frontotemporal lobe degeneration

GABA-A :

 γ-Aminobutyric acid receptor type A

HC :

 Healthy controls

HSD11B1 :

 Hydroxysteroid dehydrogenase 11-beta type 1

IDE :

 Insulin degrading enzyme

IL :

 Interleukin

iNPH :

 Idiopathic normal pressure hydrocephalus

LRG :

 Leucine-rich-α2-glycoprotein

LRR :

 Leucine-rich repeats

MAP :

 Microtubule-associated protein

MAPT :

 Microtubule-associated protein tau

MBP :

 Myelin based protein

MCI :

 Mild cognitive impairment

MCP-1 :

 Monocyte chemoattractant protein 1

MS :

 Multiple sclerosis

MSA :

 Multiple system atrophy

MTB :

 Microtubule-binding

NAS :

 Neuroactive neurosteroids

NFL :

 Neurofilament protein light

NMDA :

 N-methyl-D-aspartate

NPH :

 Normal pressure hydrocephalus

p-tau :

 Hyperphosphorylated tau

PD :

 Parkinson’s disease

PREG/PREGS :

 Pregnenolone/pregnenolonesulphate

PSP :

 Progressive supranuclear palsy

ROC :

 Receiver operating characteristic

sAPP :

 Soluble amyloid precursor protein

SD :

 Standard deviation

SIVD :

 Subcortical ischemic vascular disease

SLC :

 Solute carrier

SMD :

 Standardized mean difference

sNPH :

 Secondary normal pressure hydrocephalus

t-tau :

 Total tau

TGF-β :

 Transforming growth factor beta

TNF-α :

 Tumor necrosis factor alpha

TNF-β :

 Tumor necrosis factor beta

VD :

Vascular dementia

VDR :

Vitamin D receptor

VEGF :

Vascular endothelial growth factor

YKL-40 :

 Chitinase-3-like protein

References

  1. Akai K, Uchigasaki S, Tanaka U, Komatsu A. Normal pressure hydrocephalus. Neuropathological study. Acta Pathol Jpn. 1987;37:97–110.

    CAS  PubMed  Google Scholar 

  2. Kiefer M, Unterberg A. The differential diagnosis and treatment of normal-pressure hydrocephalus. Deutsches Aerzteblatt Online. 2012. https://doi.org/10.3238/arztebl.2012.0015.

    Article  Google Scholar 

  3. Daou B, Klinge P, Tjoumakaris S, Rosenwasser RH, Jabbour P. Revisiting secondary normal pressure hydrocephalus: does it exist? A review Neurosurgical Focus. 2016;41:E6. https://doi.org/10.3171/2016.6.focus16189.

    Article  PubMed  Google Scholar 

  4. Hebb AO, Cusimano MD. Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 2001;49:1166–1184; discussion 1184–1166. https://doi.org/10.1097/00006123-200111000-00028.

  5. Wang C, Du HG, Yin LC, He M, Zhang GJ, Tian Y, Hao BL. Analysis of related factors affecting prognosis of shunt surgery in patients with secondary normal pressure hydrocephalus. Chin J Traumatol. 2013;16:221–4.

    PubMed  Google Scholar 

  6. Zemack G, Romner B. Adjustable valves in normal-pressure hydrocephalus: a retrospective study of 218 patients. Neurosurgery 2002;51:1392–1400; discussion 1400–1392.

    Google Scholar 

  7. Børgesen SE. Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir. 1984;71:1–45. https://doi.org/10.1007/bf01401149.

    Article  PubMed  Google Scholar 

  8. Craven CL, Toma AK, Mostafa T, Patel N, Watkins LD. The predictive value of DESH for shunt responsiveness in idiopathic normal pressure hydrocephalus. J Clin Neurosci. 2016;34:294–8. https://doi.org/10.1016/j.jocn.2016.09.004.

    Article  PubMed  Google Scholar 

  9. Skalický P, Vlasák A, Mládek A, Vrána J, Bajaček M, Whitley H, Beneš V, Bradáč O. Role of DESH, callosal angle and cingulate sulcus sign in prediction of gait responsiveness after shunting in iNPH patients. J Clin Neurosci. 2021;83:99–107. https://doi.org/10.1016/j.jocn.2020.11.020.

    Article  PubMed  Google Scholar 

  10. Otero-Rodríguez A, Sousa-Casasnovas P, Cruz-Terrón H, Arandia-Guzmán DA, García-Martín A, Pascual-Argente D, Muñoz-Martín MC. Utility of radiologic variables to predict the result of lumbar infusion test in the diagnosis of idiopathic normal pressure hydrocephalus. World Neurosurg. 2019;127:e957–64. https://doi.org/10.1016/j.wneu.2019.04.009.

    Article  PubMed  Google Scholar 

  11. Vlasák A, Skalický P, Mládek A, Vrána J, Beneš V, Bradáč O. Structural volumetry in NPH diagnostics and treatment—future or dead end? Neurosurg Rev. 2021;44:503–14. https://doi.org/10.1007/s10143-020-01245-y.

    Article  PubMed  Google Scholar 

  12. Mihalj M, Dolić K, Kolić K, Ledenko V. CSF tap test - Obsolete or appropriate test for predicting shunt responsiveness? A Systemic Rev. J Neurol Sci. 2016;362:78–84. https://doi.org/10.1016/j.jns.2016.01.028.

    Article  PubMed  Google Scholar 

  13. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57:S4–16; discussion ii–v. https://doi.org/10.1227/01.neu.0000168185.29659.c5.

  14. Brean A, Eide PK. Assessment of idiopathic normal pressure patients in neurological practice: the role of lumbar infusion testing for referral of patients to neurosurgery. Eur J Neurol. 2008;15:605–12. https://doi.org/10.1111/j.1468-1331.2008.02134.x.

    Article  CAS  PubMed  Google Scholar 

  15. Wilson RK, Williams MA. Normal pressure hydrocephalus. Clin Geriatr Med 2006;22:935–951, viii. https://doi.org/10.1016/j.cger.2006.06.010.

  16. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand. 2008;118:48–53. https://doi.org/10.1111/j.1600-0404.2007.00982.x.

    Article  CAS  PubMed  Google Scholar 

  17. Martín-Láez R, Caballero-Arzapalo H, López-Menéndez L, Arango-Lasprilla JC, Vázquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurg. 2015;84:2002–9. https://doi.org/10.1016/j.wneu.2015.07.005.

    Article  PubMed  Google Scholar 

  18. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelso C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82:1449–54. https://doi.org/10.1212/wnl.0000000000000342.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brean A, Fredø HL, Sollid S, Müller T, Sundstrøm T, Eide PK. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol Scand. 2009;120:314–6. https://doi.org/10.1111/j.1600-0404.2009.01250.x.

    Article  CAS  PubMed  Google Scholar 

  20. Kim DJ, Kim H, Kim YT, Yoon BC, Czosnyka Z, Park KW, Czosnyka M. Thresholds of resistance to CSF outflow in predicting shunt responsiveness. Neurol Res. 2015;37:332–40. https://doi.org/10.1179/1743132814y.0000000454.

    Article  PubMed  Google Scholar 

  21. Williams MA, Malm J. Diagnosis and treatment of idiopathic normal pressure hydrocephalus. CONTINUUM: Lifelong Learning in Neurol. 2016;22:579–599. https://doi.org/10.1212/con.0000000000000305.

  22. Allali G, Laidet M, Armand S, Assal F. Brain comorbidities in normal pressure hydrocephalus. Eur J Neurol. 2018;25:542–8. https://doi.org/10.1111/ene.13543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stolze H. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70:289–97. https://doi.org/10.1136/jnnp.70.3.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tarnaris A, Kitchen ND, Watkins LD. Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J Neurosurg. 2009;110:837–51. https://doi.org/10.3171/2007.9.17572.

    Article  CAS  PubMed  Google Scholar 

  25. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. The Lancet Neurol. 2016;15:673–84. https://doi.org/10.1016/s1474-4422(16)00070-3.

    Article  CAS  PubMed  Google Scholar 

  26. Jeppsson A, Wikkelsö C, Blennow K, Zetterberg H, Constantinescu R, Remes AM, Herukka S-K, Rauramaa T, Nagga K, Leinonen V, et al. CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics. J Neurol Neurosurg Psychiatry. 2019;90:1117–23. https://doi.org/10.1136/jnnp-2019-320826.

    Article  PubMed  Google Scholar 

  27. Agren-Wilsson A, Lekman A, Sjöberg W, Rosengren L, Blennow K, Bergenheim AT, Malm J. CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2007;116:333–9. https://doi.org/10.1111/j.1600-0404.2007.00890.x.

    Article  CAS  PubMed  Google Scholar 

  28. Pfanner T, Henri-Bhargava A, Borchert S. Cerebrospinal fluid biomarkers as predictors of shunt response in idiopathic normal pressure hydrocephalus: a systematic review. Canadian J Neurol Sci/J Canadien des Sci Neurologiques. 2018;45:3–10. https://doi.org/10.1017/cjn.2017.251.

    Article  Google Scholar 

  29. Ray B, Reyes PF, Lahiri DK. Biochemical studies in normal pressure hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Aβ) peptide and phospho-tau. J Psychiatr Res. 2011;45:539–47. https://doi.org/10.1016/j.jpsychires.2010.07.011.

    Article  PubMed  Google Scholar 

  30. Schirinzi T, Sancesario GM, Ialongo C, Imbriani P, Madeo G, Toniolo S, Martorana A, Pisani A. A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol. 2015;6. https://doi.org/10.3389/fneur.2015.00086.

  31. Schirinzi T, Sancesario GM, Di Lazzaro G, D’Elia A, Imbriani P, Scalise S, Pisani A. Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm. 2018;125:673–9. https://doi.org/10.1007/s00702-018-1842-z.

    Article  CAS  PubMed  Google Scholar 

  32. Sosvorova L, Vcelak J, Mohapl M, Vitku J, Bicikova M, Hampl R. Selected pro- and anti-inflammatory cytokines in cerebrospinal fluid in normal pressure hydrocephalus. Neuro Endocrinol Lett. 2014;35:586–93.

    PubMed  Google Scholar 

  33. Sosvorova L, Hill M, Mohapl M, Vitku J, Hampl R. Steroid hormones in prediction of normal pressure hydrocephalus. J Steroid Biochem Mol Biol. 2015;152:124–32. https://doi.org/10.1016/j.jsbmb.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  34. Sosvorova L, Mohapl M, Hill M, Starka L, Bicikova M, Vitku J, Kanceva R, Bestak J, Hampl R. Steroid hormones and homocysteine in the outcome of patients with normal pressure hydrocephalus. Physiol Res. 2015;S227–S236. https://doi.org/10.33549/physiolres.933072.

  35. Li X, Miyajima M, Mineki R, Taka H, Murayama K, Arai H. Analysis of potential diagnostic biomarkers in cerebrospinal fluid of idiopathic normal pressure hydrocephalus by proteomics. Acta Neurochir. 2006;148:859–64. https://doi.org/10.1007/s00701-006-0787-4.

    Article  CAS  PubMed  Google Scholar 

  36. Jeppsson A, Zetterberg H, Blennow K, Wikkelsø C. Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology. 2013;80:1385–92. https://doi.org/10.1212/WNL.0b013e31828c2fda.

    Article  CAS  PubMed  Google Scholar 

  37. Skalický P, Mládek A, Vlasák A, De Lacy P, Beneš V, Bradáč O. Normal pressure hydrocephalus—an overview of pathophysiological mechanisms and diagnostic procedures. Neurosurg Rev. 2020;43:1451–64. https://doi.org/10.1007/s10143-019-01201-5.

    Article  PubMed  Google Scholar 

  38. Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, Blennow K. Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Archives of Neurol. 2001;58. https://doi.org/10.1001/archneur.58.3.373.

  39. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284:643–63. https://doi.org/10.1111/joim.12816.

    Article  CAS  PubMed  Google Scholar 

  40. Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure. 2010;18:1244–60. https://doi.org/10.1016/j.str.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  41. Dogan A. Amyloidosis: insights from proteomics. Annu Rev Pathol. 2017;12:277–304. https://doi.org/10.1146/annurev-pathol-052016-100200.

    Article  CAS  PubMed  Google Scholar 

  42. Baumkotter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolaus S, et al. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci. 2014;34:11159–72. https://doi.org/10.1523/jneurosci.0180-14.2014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chasseigneaux S, Allinquant B. Functions of Aβ, sAPPα and sAPPβ : similarities and differences. J Neurochem. 2012;120:99–108. https://doi.org/10.1111/j.1471-4159.2011.07584.x.

    Article  CAS  PubMed  Google Scholar 

  44. Pearson HA, Peers C. Physiological roles for amyloid β peptides. J Physiol. 2006;575:5–10. https://doi.org/10.1113/jphysiol.2006.111203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mayeux R, Honig LS, Tang MX, Manly J, Stern Y, Schupf N, Mehta PD. Plasma Aβ40 and Aβ42 and Alzheimer’s disease. Neurology. 2003;61:1185. https://doi.org/10.1212/01.WNL.0000091890.32140.8F.

    Article  CAS  PubMed  Google Scholar 

  46. Shoji M, Kanai M. Cerebrospinal fluid Aβ40 and Aβ42: Natural course and clinical usefulness. J Alzheimers Dis. 2001;3:313–21. https://doi.org/10.3233/JAD-2001-3306.

    Article  CAS  PubMed  Google Scholar 

  47. Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem. 2005;38:105–27. https://doi.org/10.1007/0-387-23226-5_5.

    Article  CAS  PubMed  Google Scholar 

  48. Sun X, Chen W-D, Wang Y-D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Frontiers in Pharmacol. 2015;6. https://doi.org/10.3389/fphar.2015.00221.

  49. Chen G-F, Xu T-H, Yan Y, Zhou Y-R, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38:1205–35. https://doi.org/10.1038/aps.2017.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qiu T, Liu Q, Chen YX, Zhao YF, Li YM. Aβ42 and Aβ40: similarities and differences. J Pept Sci. 2015;21:522–9. https://doi.org/10.1002/psc.2789.

    Article  CAS  PubMed  Google Scholar 

  51. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Masters CL, Beyreuther K. Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the A amyloid pathway. Brain. 2006;129:2823–39. https://doi.org/10.1093/brain/awl251.

    Article  PubMed  Google Scholar 

  53. Zirah S, Kozin SA, Mazur AK, Blond A, Cheminant M, Ségalas-Milazzo I, Debey P, Rebuffat S. Structural changes of region 1–16 of the Alzheimer disease amyloid β-peptide upon zinc binding and in vitro aging. J Biol Chem. 2006;281:2151–61. https://doi.org/10.1074/jbc.m504454200.

    Article  CAS  PubMed  Google Scholar 

  54. Chander H, Chauhan A, Chauhan V. Binding of proteases to fibrillar amyloid-beta protein and its inhibition by Congo red. J Alzheimers Dis. 2007;12:261–9. https://doi.org/10.3233/jad-2007-12308.

    Article  CAS  PubMed  Google Scholar 

  55. Karran E, Mercken M, Strooper BD. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discovery. 2011;10:698–712. https://doi.org/10.1038/nrd3505.

    Article  CAS  PubMed  Google Scholar 

  56. Iliff JJ, Wang M, Liao Y, Plogg Benjamin A, Peng W, Gundersen Georg A, Benveniste H, Vates GE, Deane R, Goldman Steven A, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Translational Med. 2012;4:147ra111–147ra111. https://doi.org/10.1126/scitranslmed.3003748.

  57. Murray MM, Bernstein SL, Nyugen V, Condron MM, Teplow DB, Bowers MT. Amyloid β protein: Aβ40 inhibits Aβ42 oligomerization. J Am Chem Soc. 2009;131:6316–7. https://doi.org/10.1021/ja8092604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schoonenboom NS, Mulder C, Van Kamp GJ, Mehta SP, Scheltens P, Blankenstein MA, Mehta PD. Amyloid β 38, 40, and 42 species in cerebrospinal fluid: more of the same? Ann Neurol. 2005;58:139–42. https://doi.org/10.1002/ana.20508.

    Article  CAS  PubMed  Google Scholar 

  59. Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer’s disease. Int J Neurosci. 2014;124:307–21. https://doi.org/10.3109/00207454.2013.833510.

    Article  CAS  PubMed  Google Scholar 

  60. Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem. 1992;267:546–54. https://doi.org/10.1016/s0021-9258(18)48529-8.

    Article  CAS  PubMed  Google Scholar 

  61. Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Younkin LH, Suzuki N, Younkin SG. Amyloid β protein (Aβ) in Alzheimeri’s disease brain. J Biol Chem. 1995;270:7013–6. https://doi.org/10.1074/jbc.270.13.7013.

    Article  CAS  PubMed  Google Scholar 

  62. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003;37:925–37. https://doi.org/10.1016/s0896-6273(03)00124-7.

    Article  CAS  PubMed  Google Scholar 

  63. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, et al. Beta-amyloid monomers are neuroprotective. J Neurosci. 2009;29:10582–7. https://doi.org/10.1523/jneurosci.1736-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Whitson Janet S, Selkoe Dennis J, Cotman CW. Amyloid β protein enhances the survival of hippocampal neurons in vitro. Science. 1989;243:1488–90. https://doi.org/10.1126/science.2928783.

    Article  Google Scholar 

  65. McCord L, Liang W, Farcasanu M, Scherpelz K, Meredith S, Koide S, Tang W. Crystal structure analysis of fab-bound human insulin degrading enzyme (IDE) in complex with amyloid-beta (1–40). 2014. https://doi.org/10.2210/pdb4M1C/pdb.

  66. Jingami N, Asada-Utsugi M, Uemura K, Noto R, Takahashi M, Ozaki A, Kihara T, Kageyama T, Takahashi R, Shimohama S, et al. Idiopathic normal pressure hydrocephalus has a different cerebrospinal fluid biomarker profile from Alzheimer’s disease. J Alzheimers Dis. 2015;45:109–15. https://doi.org/10.3233/jad-142622.

    Article  CAS  PubMed  Google Scholar 

  67. Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F, Nilsson C, Widner H, Decraemer H, Nägga K, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69:1445. https://doi.org/10.1001/archneurol.2012.1654.

    Article  PubMed  Google Scholar 

  68. Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Kararizou E, Vassilopoulos D. Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol. 2007;14:168–73. https://doi.org/10.1111/j.1468-1331.2006.01593.x.

    Article  CAS  PubMed  Google Scholar 

  69. Miyajima M, Nakajima M, Ogino I, Miyata H, Motoi Y, Arai H. Soluble amyloid precursor protein α in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur J Neurol. 2013;20:236–42. https://doi.org/10.1111/j.1468-1331.2012.03781.x.

    Article  CAS  PubMed  Google Scholar 

  70. Libard S, Walter J, Alafuzoff I. In vivo characterization of biochemical variants of amyloid-β in subjects with idiopathic normal pressure hydrocephalus and Alzheimer’s disease neuropathological change. J Alzheimers Dis. 2021;80:1003–12. https://doi.org/10.3233/jad-201469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pyykkö OT, Lumela M, Rummukainen J, Nerg O, Seppälä TT, Herukka S-K, Koivisto AM, Alafuzoff I, Puli L, Savolainen S, et al. Cerebrospinal fluid biomarker and brain biopsy findings in idiopathic normal pressure hydrocephalus. PLoS ONE 2014;9:e91974. https://doi.org/10.1371/journal.pone.0091974.

  72. Kokkinou M, Beishon LC, Smailagic N, Noel-Storr AH, Hyde C, Ukoumunne O, Worrall RE, Hayen A, Desai M, Ashok AH, et al. Plasma and cerebrospinal fluid ABeta42 for the differential diagnosis of Alzheimer's disease dementia in participants diagnosed with any dementia subtype in a specialist care setting. Cochrane Database of Systematic Rev. 2021. https://doi.org/10.1002/14651858.CD010945.pub2.

  73. Chen Z, Liu C, Zhang J, Relkin N, Xing Y, Li Y. Cerebrospinal fluid Aβ42, t-tau, and p-tau levels in the differential diagnosis of idiopathic normal-pressure hydrocephalus: a systematic review and meta-analysis. Fluids and Barriers of the CNS 2017;14. https://doi.org/10.1186/s12987-017-0062-5.

  74. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci. 1975;72:1858–62. https://doi.org/10.1073/pnas.72.5.1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schweers O, Schönbrunn-Hanebeck E, Marx A, Mandelkow E. Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem. 1994;269:24290–7.

    Article  CAS  PubMed  Google Scholar 

  76. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human .tau. gene. Biochemistry 1992;31:10626–10633. https://doi.org/10.1021/bi00158a027.

  77. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Mol Brain Res. 1986;1:271–80. https://doi.org/10.1016/0169-328X(86)90033-1.

    Article  CAS  Google Scholar 

  78. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33:95–130. https://doi.org/10.1016/S0165-0173(00)00019-9.

    Article  PubMed  Google Scholar 

  79. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 1989;3:519–26. https://doi.org/10.1016/0896-6273(89)90210-9.

    Article  CAS  PubMed  Google Scholar 

  80. Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA. Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J. 1989;8:393–9. https://doi.org/10.1002/j.1460-2075.1989.tb03390.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97. https://doi.org/10.1016/j.cell.2010.06.036.

    Article  CAS  PubMed  Google Scholar 

  82. Avila J, Lucas JJ, Pérez MAR, Hernández F. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004;84:361–84. https://doi.org/10.1152/physrev.00024.2003.

    Article  CAS  PubMed  Google Scholar 

  83. Vanier MT, Neuville P, Michalik L, Launay JF. Expression of specific tau exons in normal and tumoral pancreatic acinar cells. J Cell Sci. 1998;111(Pt 10):1419–32.

    Article  CAS  PubMed  Google Scholar 

  84. Gu Y, Oyama F, Ihara Y. τ Is Widely Expressed in Rat Tissues. J Neurochem. 1996;67:1235–44. https://doi.org/10.1046/j.1471-4159.1996.67031235.x.

    Article  CAS  PubMed  Google Scholar 

  85. Pîrşcoveanu DFV, Pirici I, Tudorică V, Bălşeanu TA, Albu VC, Bondari S, Bumbea AM, Pîrşcoveanu M. Tau protein in neurodegenerative diseases—a review. Rom J Morphol Embryol. 2017;58:1141–50.

    PubMed  Google Scholar 

  86. Lee G, Neve RL, Kosik KS. The microtubule binding domain of tau protein. Neuron. 1989;2:1615–24. https://doi.org/10.1016/0896-6273(89)90050-0.

    Article  CAS  PubMed  Google Scholar 

  87. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci. 1986;83:4913–7. https://doi.org/10.1073/pnas.83.13.4913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sergeant N, Bussière T, Vermersch P, Lejeune JP, Delacourte A. Isoelectric point differentiates PHF-tau from biopsy-derived human brain tau proteins. NeuroReport 1995;6. https://doi.org/10.1097/00001756-199511000-00028.

  89. Lim TS, Choi JY, Park SA, Youn YC, Lee HY, Kim BG, Joo IS, Huh K, Moon SY. Evaluation of coexistence of Alzheimer’s disease in idiopathic normal pressure hydrocephalus using ELISA analyses for CSF biomarkers. BMC Neurol. 2014;14:66. https://doi.org/10.1186/1471-2377-14-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manniche C, Simonsen AH, Hasselbalch SG, Andreasson U, Zetterberg H, Blennow K, Høgh P, Juhler M, Hejl A-M. Cerebrospinal fluid biomarkers to differentiate idiopathic normal pressure hydrocephalus from subcortical ischemic vascular disease. J Alzheimers Dis. 2020;75:937–47. https://doi.org/10.3233/jad-200036.

    Article  CAS  PubMed  Google Scholar 

  91. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. The Lancet Neurol. 2018;17:1016–24. https://doi.org/10.1016/s1474-4422(18)30318-1.

    Article  CAS  PubMed  Google Scholar 

  92. Yang C, Huang X, Huang X, Mai H, Li J, Jiang T, Wang X, Lü T. Aquaporin-4 and Alzheimer’s disease. J Alzheimers Dis. 2016;52:391–402. https://doi.org/10.3233/JAD-150949.

    Article  CAS  PubMed  Google Scholar 

  93. Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Loss of perivascular aquaporin-4 in idiopathic normal pressure hydrocephalus. Glia. 2019;67:91–100. https://doi.org/10.1002/glia.23528.

    Article  PubMed  Google Scholar 

  94. Reeves BC, Karimy JK, Kundishora AJ, Mestre H, Cerci HM, Matouk C, Alper SL, Lundgaard I, Nedergaard M, Kahle KT. Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med. 2020;26:285–95. https://doi.org/10.1016/j.molmed.2019.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eid T, Lee TSW, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, De Lanerolle NC. Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci. 2005;102:1193–8. https://doi.org/10.1073/pnas.0409308102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Misu T, Fujihara K, Kakita A, Konno H, Nakamura M, Watanabe S, Takahashi T, Nakashima I, Takahashi H, Itoyama Y. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain. 2007;130:1224–34. https://doi.org/10.1093/brain/awm047.

    Article  CAS  PubMed  Google Scholar 

  97. Verkman AS, Smith AJ, Phuan P-W, Tradtrantip L, Anderson MO. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets. 2017;21:1161–70. https://doi.org/10.1080/14728222.2017.1398236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin-4 in brain. Physiol Rev. 2013;93:1543–62. https://doi.org/10.1152/physrev.00011.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A. Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurg Focus. 2016;41:E8. https://doi.org/10.3171/2016.7.focus16191.

    Article  PubMed  Google Scholar 

  100. Bradley WG. CSF flow in the brain in the context of normal pressure hydrocephalus. Am J Neuroradiol. 2015;36:831–8. https://doi.org/10.3174/ajnr.a4124.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology. 2014;83:1573–5. https://doi.org/10.1212/wnl.0000000000000916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gastaldi M, Todisco M, Carlin G, Scaranzin S, Zardini E, Minafra B, Zangaglia R, Pichiecchio A, Reindl M, Jarius S, et al. AQP4 autoantibodies in patients with idiopathic normal pressure hydrocephalus. J Neuroimmunol. 2020;349. https://doi.org/10.1016/j.jneuroim.2020.577407.

  103. Kalani MYS, Filippidis AS, Rekate HL. Hydrocephalus and aquaporins: the role of aquaporin-1. In: Springer Vienna; 2012. p. 51–54. https://doi.org/10.1007/978-3-7091-0923-6_11.

  104. Castañeyra-Ruiz L, González-Marrero I, Carmona-Calero EM, Abreu-Gonzalez P, Lecuona M, Brage L, Rodríguez EM, Castañeyra-Perdomo A. Cerebrospinal fluid levels of tumor necrosis factor alpha and aquaporin 1 in patients with mild cognitive impairment and idiopathic normal pressure hydrocephalus. Clin Neurol Neurosurg. 2016;146:76–81. https://doi.org/10.1016/j.clineuro.2016.04.025.

    Article  PubMed  Google Scholar 

  105. Hua Y, Ying X, Qian Y, Liu H, Lan Y, Xie A, Zhu X. Physiological and pathological impact of AQP1 knockout in mice. Biosci. Reports 2019;39:BSR20182303. https://doi.org/10.1042/bsr20182303.

  106. Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV. Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery. 2011;68:462–73. https://doi.org/10.1227/NEU.0b013e3182011860.

    Article  PubMed  Google Scholar 

  107. Levin SG, Godukhin OV. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochem Mosc. 2017;82:264–74. https://doi.org/10.1134/s000629791703004x.

    Article  CAS  Google Scholar 

  108. Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech. 2000;50:184–95. https://doi.org/10.1002/1097-0029(20000801)50:3%3c184::Aid-jemt2%3e3.0.Co;2-h.

    Article  CAS  PubMed  Google Scholar 

  109. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Sutela A, Vanninen R, Jääskeläinen JE, Soininen H, Alafuzoff I. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol. 2012;38:72–86. https://doi.org/10.1111/j.1365-2990.2011.01195.x.

    Article  CAS  PubMed  Google Scholar 

  110. Lee J-H, Park D-H, Back D-B, Lee J-Y, Lee C-I, Park K-J, Kang S-H, Cho T-H, Chung Y-G. Comparison of cerebrospinal fluid biomarkers between idiopathic normal pressure hydrocephalus and subarachnoid hemorrhage-induced chronic hydrocephalus: A pilot study. Medical Sci. Monitor 2012;18:PR19–PR25. https://doi.org/10.12659/msm.883586.

  111. Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res. 2012;53:1437–50. https://doi.org/10.1194/jlr.r026682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tisell M, Tullberg M, Månsson JE, Fredman P, Blennow K, Wikkelsø C. Differences in cerebrospinal fluid dynamics do not affect the levels of biochemical markers in ventricular CSF from patients with aqueductal stenosis and idiopathic normal pressure hydrocephalus. Eur J Neurol. 2004;11:17–23. https://doi.org/10.1046/j.1351-5101.2003.00698.x.

    Article  CAS  PubMed  Google Scholar 

  113. Tullberg M. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry. 2000;69:74–81. https://doi.org/10.1136/jnnp.69.1.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Simi A, Tsakiri N, Wang P, Rothwell NJ. Interleukin-1 and inflammatory neurodegeneration. Biochem Soc Trans. 2007;35:1122–6. https://doi.org/10.1042/BST0351122.

    Article  CAS  PubMed  Google Scholar 

  115. Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P. Increased intrathecal TGF-β1, but not IL-12, IFN-γ and IL-10 levels in Alzheimer’s disease patients. Neurol Sci. 2006;27:33–9. https://doi.org/10.1007/s10072-006-0562-6.

    Article  CAS  PubMed  Google Scholar 

  116. Boyd FT, Cheifetz S, Andres J, Laiho M, Massagué J. Transforming growth factor-β receptors and binding proteoglycans. J Cell Sci. 1990;1990:131–8. https://doi.org/10.1242/jcs.1990.supplement_13.12.

    Article  Google Scholar 

  117. Clark DA, Coker R. Molecules in focus transforming growth factor-beta (TGF-β). Int J Biochem Cell Biol. 1998;30:293–8. https://doi.org/10.1016/S1357-2725(97)00128-3.

    Article  CAS  PubMed  Google Scholar 

  118. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: context-dependent roles in cell and tissue physiology. Cold Spring Harbor Perspectives in Biol. 2016;8:a021873. https://doi.org/10.1101/cshperspect.a021873.

  119. Li X, Miyajima M, Jiang C, Arai H. Expression of TGF-βs and TGF-β type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neurosci Lett. 2007;413:141–4. https://doi.org/10.1016/j.neulet.2006.11.039.

    Article  CAS  PubMed  Google Scholar 

  120. Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA, Tsang MLS, Lucas R, Zhang B-L, Wenker J, et al. Transforming growth factor β1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry. 1996;35:8517–34. https://doi.org/10.1021/bi9604946.

    Article  CAS  PubMed  Google Scholar 

  121. Wu V-Y, Walz DA, McCoy LE. Purification and characterization of human and bovine platelet factor 4. Prep Biochem. 1977;7:479–93. https://doi.org/10.1080/00327487708065515.

    Article  CAS  PubMed  Google Scholar 

  122. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29:313–26. https://doi.org/10.1089/jir.2008.0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Groves DT, Jiang Y. Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med. 1995;6:109–18. https://doi.org/10.1177/10454411950060020101.

    Article  Google Scholar 

  124. Matute-Blanch C, Calvo-Barreiro L, Carballo-Carbajal I, Gonzalo R, Sanchez A, Vila M, Montalban X, Comabella M. Chitinase 3-like 1 is neurotoxic in primary cultured neurons. Scient. Reports 2020;10. https://doi.org/10.1038/s41598-020-64093-2.

  125. Kester MI, Teunissen CE, Sutphen C, Herries EM, Ladenson JH, Xiong C, Scheltens P, Van Der Flier WM, Morris JC, Holtzman DM, et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer’s disease in a memory clinic cohort. Alzheimer's Res Therapy 2015;7. https://doi.org/10.1186/s13195-015-0142-1.

  126. Bonneh-Barkay D, Wang G, Starkey A, Hamilton RL, Wiley CA. In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J Neuroinflammation. 2010;7:34. https://doi.org/10.1186/1742-2094-7-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hjalmarsson C, Bjerke M, Andersson B, Blennow K, Zetterberg H, Åberg ND, Olsson B, Eckerström C, Bokemark L, Wallin A. Neuronal and glia-related biomarkers in cerebrospinal fluid of patients with acute ischemic stroke. J Central Nervous Syst Disease 2014;6:JCNSD.S13821. https://doi.org/10.4137/jcnsd.s13821.

  128. Ko PW, Lee HW, Lee M, Youn YC, Kim S, Kim JH, Kang K, Suk K. Increased plasma levels of chitinase 3-like 1 (CHI3L1) protein in patients with idiopathic normal-pressure hydrocephalus. J Neurol Sci 2021;423:117353. https://doi.org/10.1016/j.jns.2021.117353.

  129. Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, Sancesario G, Bernardini S, De Angelis G, Martino G, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler J. 2013;20:304–12. https://doi.org/10.1177/1352458513498128.

    Article  CAS  Google Scholar 

  130. Lin Y-S, Lee W-J, Wang S-J, Fuh J-L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Scientific Reports 2018;8. https://doi.org/10.1038/s41598-018-35766-w.

  131. Mattsson N, Andreasson U, Zetterberg H, Blennow K. Association of plasma neurofilament light with neurodegeneration in patients with alzheimer disease. JAMA Neurol. 2017;74:557. https://doi.org/10.1001/jamaneurol.2016.6117.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Constantinescu R, Romer M, Oakes D, Rosengren L, Kieburtz K. Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord. 2009;15:245–8. https://doi.org/10.1016/j.parkreldis.2008.05.012.

    Article  PubMed  Google Scholar 

  133. Olsson B, Portelius E, Cullen NC, Sandelius Å, Zetterberg H, Andreasson U, Höglund K, Irwin DJ, Grossman M, Weintraub D, et al. Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders. JAMA Neurol. 2019;76:318. https://doi.org/10.1001/jamaneurol.2018.3746.

    Article  PubMed  Google Scholar 

  134. Rohrer JD, Woollacott IOC, Dick KM, Brotherhood E, Gordon E, Fellows A, Toombs J, Druyeh R, Cardoso MJ, Ourselin S, et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology. 2016;87:1329–36. https://doi.org/10.1212/wnl.0000000000003154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology. 2015;84:2247–57. https://doi.org/10.1212/wnl.0000000000001642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Varhaug KN, Torkildsen Ø, Myhr K-M, Vedeler CA. Neurofilament light chain as a biomarker in multiple sclerosis. Frontiers in Neurol. 2019;10. https://doi.org/10.3389/fneur.2019.00338.

  137. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelsö C. CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology. 1998;50:1122. https://doi.org/10.1212/WNL.50.4.1122.

    Article  CAS  PubMed  Google Scholar 

  138. Tullberg M, Blennow K, Månsson J-E, Fredman P, Tisell M, Wikkelsö C. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cerebrospinal Fluid Res. 2008;5:9. https://doi.org/10.1186/1743-8454-5-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lamers KJB, Vos P, Verbeek MM, Rosmalen F, van Geel WJA, van Engelen BGM. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull. 2003;61:261–4. https://doi.org/10.1016/S0361-9230(03)00089-3.

    Article  CAS  PubMed  Google Scholar 

  140. Boggs JM. Myelin basic protein: a multifunctional protein. Cellular and Molecular Life Sci CMLS. 2006;63:1945–61. https://doi.org/10.1007/s00018-006-6094-7.

    Article  CAS  PubMed  Google Scholar 

  141. Raasakka A, Ruskamo S, Kowal J, Barker R, Baumann A, Martel A, Tuusa J, Myllykoski M, Bürck J, Ulrich AS, et al. Membrane association landscape of myelin basic protein portrays formation of the myelin major dense line. Scientific Reports 2017;7. https://doi.org/10.1038/s41598-017-05364-3.

  142. Sutton LN, Wood JH, Brooks BR, Barrer SJ, Kline M, Cohen SR. Cerebrospinal fluid myelin basic protein in hydrocephalus. J Neurosurg. 1983;59:467–70. https://doi.org/10.3171/jns.1983.59.3.0467.

    Article  CAS  PubMed  Google Scholar 

  143. Haupt H, Baudner S. [Isolation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author's transl)]. Hoppe Seylers Z Physiol Chem. 1977;358:639–646.

    Google Scholar 

  144. Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics. 2007;8:124. https://doi.org/10.1186/1471-2164-8-124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shirai R, Hirano F, Ohkura N, Ikeda K, Inoue S. Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute-phase response. Biochem Biophys Res Commun. 2009;382:776–9. https://doi.org/10.1016/j.bbrc.2009.03.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Akiba C, Nakajima M, Miyajima M, Ogino I, Miura M, Inoue R, Nakamura E, Kanai F, Tada N, Kunichika M, et al. Leucine-rich α2-glycoprotein overexpression in the brain contributes to memory impairment. Neurobiol Aging. 2017;60:11–9. https://doi.org/10.1016/j.neurobiolaging.2017.08.014.

    Article  CAS  PubMed  Google Scholar 

  147. Nakajima M, Miyajima M, Ogino I, Watanabe M, Miyata H, Karagiozov KL, Arai H, Hagiwara Y, Segawa T, Kobayashi K, et al. Leucine-rich α-2-glycoprotein is a marker for idiopathic normal pressure hydrocephalus. Acta Neurochir. 2011;153:1339–46. https://doi.org/10.1007/s00701-011-0963-z.

    Article  PubMed  Google Scholar 

  148. Nakajima M, Miyajima M, Ogino I, Watanabe M, Hagiwara Y, Segawa T, Kobayashi K, Arai H. Brain localization of leucine-rich α2-glycoprotein and its role. In: Hydrocephalus. Vienna: Springer Vienna; 2012.

    Google Scholar 

  149. Baulieu E-E, Robel P. Neurosteroids: a new brain function? J Steroid Biochem Mol Biol. 1990;37:395–403. https://doi.org/10.1016/0960-0760(90)90490-C.

    Article  CAS  PubMed  Google Scholar 

  150. Maninger N, Wolkowitz OM, Reus VI, Epel ES, Mellon SH. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol. 2009;30:65–91. https://doi.org/10.1016/j.yfrne.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  151. Caruso D, Melis M, Fenu G, Giatti S, Romano S, Grimoldi M, Crippa D, Marrosu MG, Cavaletti G, Melcangi RC. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J Neurochem. 2014;130:591–7.

    Article  CAS  PubMed  Google Scholar 

  152. Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev. 2001;37:3–12.

    Article  CAS  PubMed  Google Scholar 

  153. Reddy DS. Neurosteroids. Elsevier 2010;113–137. https://doi.org/10.1016/B978-0-444-53630-3.00008-7.

  154. Akwa Y, Young J, Kabbadj K, Sancho MJ, Zucman D, Vourc’h C, Jung-Testas I, Hu ZY, Le Goascogne C, Jo DH, et al. Neurosteroids: biosynthesis, metabolism and function of pregnenolone and dehydroepiandrosterone in the brain. J Steroid Biochem Mol Biol. 1991;40:71–81. https://doi.org/10.1016/0960-0760(91)90169-6.

    Article  CAS  PubMed  Google Scholar 

  155. Vallée M. Neurosteroids and potential therapeutics: focus on pregnenolone. J Steroid Biochem Mol Biol. 2016;160:78–87. https://doi.org/10.1016/j.jsbmb.2015.09.030.

    Article  CAS  PubMed  Google Scholar 

  156. Reddy DS. Pharmacology of endogenous neuroactive steroids. Crit Rev Neurobiol. 2003;15:197–234. https://doi.org/10.1615/critrevneurobiol.v15.i34.20.

    Article  CAS  PubMed  Google Scholar 

  157. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA. Neurosteroid modulation of GABAA receptors. Prog Neurobiol. 2003;71:67–80. https://doi.org/10.1016/j.pneurobio.2003.09.001.

    Article  CAS  PubMed  Google Scholar 

  158. Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab. 2002;13:35–43. https://doi.org/10.1016/s1043-2760(01)00503-3.

    Article  CAS  PubMed  Google Scholar 

  159. Rupprecht R. Neuroactive steroids: mechanisms of action and neuropsychopharmacological properties. Psychoneuroendocrinology. 2003;28:139–68. https://doi.org/10.1016/s0306-4530(02)00064-1.

    Article  CAS  PubMed  Google Scholar 

  160. Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology. 2012;153:4111–9. https://doi.org/10.1210/en.2012-1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol. 2000;21:1–56.

    Article  CAS  PubMed  Google Scholar 

  162. Grube M, Hagen P, Jedlitschy G. Neurosteroid transport in the brain: role of ABC and SLC transporters. Front Pharmacol. 2018;9:354. https://doi.org/10.1006/frne.1999.0188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maggio M, De Vita F, Fisichella A, Colizzi E, Provenzano S, Lauretani F, Luci M, Ceresini G, Dall’Aglio E, Caffarra P, Valenti G, Ceda GP. DHEA and cognitive function in the elderly. J Steroid Biochem Mol Biol. 2015;145:281–92. https://doi.org/10.1016/j.jsbmb.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  164. Friess E, Schiffelholz T, Steckler T, Steiger A. Dehydroepiandrosterone—a neurosteroid. Eur J Clin Invest. 2000;30:46–50. https://doi.org/10.1046/j.1365-2362.2000.0300s3046.x.

    Article  CAS  PubMed  Google Scholar 

  165. Li A, May MP, Bigelow JC. An LC/MS method for the quantitative determination of 7α-OH DHEA and 7β-OH DHEA: an application for the study of the metabolism of DHEA in rat brain. Biomed Chromatogr. 2010;24:833–7. https://doi.org/10.1002/bmc.1371.

    Article  CAS  PubMed  Google Scholar 

  166. Sosvorova L, Vitku J, Chlupacova T, Mohapl M, Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids. 2015;98:1–8. https://doi.org/10.1016/j.steroids.2015.01.019.

    Article  CAS  PubMed  Google Scholar 

  167. Sosvorová L, Bešťák J, Bičíková M, Mohapl M, Hill M, Kubátová J, Hampl R. Determination of homocysteine in cerebrospinal fluid as an indicator for surgery treatment in patients with hydrocephalus. Physiol Res. 2014:521–527. https://doi.org/10.33549/physiolres.932650.

  168. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005;29:21–30. https://doi.org/10.1016/j.jchemneu.2004.08.006.

    Article  CAS  PubMed  Google Scholar 

  169. Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM, Liu P, Modlin RL, Adams JS. Extra-renal 25-hydroxyvitamin D3–1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol. 2007;103:316–321. https://doi.org/10.1016/j.jsbmb.2006.12.078.

  170. Norman AW. Minireview. vitamin D receptor: new assignments for an already busy receptor. Endocrinology 2006;147:5542–5548. https://doi.org/10.1210/en.2006-0946.

  171. Cui X, Pelekanos M, Liu PY, Burne TH, McGrath JJ, Eyles DW. The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience. 2013;236:77–87. https://doi.org/10.1016/j.neuroscience.2013.01.035.

    Article  CAS  PubMed  Google Scholar 

  172. Pardridge WM, Sakiyama R, Coty WA. Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J Neurochem. 1985;44:1138–41. https://doi.org/10.1111/j.1471-4159.1985.tb08735.x.

    Article  CAS  PubMed  Google Scholar 

  173. Spach KM, Hayes CE. Vitamin D3 confers protection from autoimmune encephalomyelitis only in female mice. J Immunol. 2005;175:4119–26. https://doi.org/10.4049/jimmunol.175.6.4119.

    Article  CAS  PubMed  Google Scholar 

  174. Groves NJ, McGrath JJ, Burne TH. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr. 2014;34:117–41. https://doi.org/10.1146/annurev-nutr-071813-105557.

    Article  CAS  PubMed  Google Scholar 

  175. Annweiler C, Bartha R, Goncalves S, Karras SN, Millet P, Feron F, Beauchet O. Vitamin D-related changes in intracranial volume in older adults: a quantitative neuroimaging study. Maturitas. 2015;80:312–7. https://doi.org/10.1016/j.maturitas.2014.12.011.

    Article  CAS  PubMed  Google Scholar 

  176. Lau H, Mat Ludin AF, Rajab NF, Shahar S. Identification of neuroprotective factors associated with successful ageing and risk of cognitive impairment among malaysia older adults. Curr Gerontol Geriatr Res. 2017;2017:4218756. https://doi.org/10.1155/2017/4218756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang R, Wang W, Hu P, Zhang R, Dong X, Zhang D. Association of dietary vitamin D intake, serum 25(OH)D(3), 25(OH)D(2) with cognitive performance in the elderly. Nutrients 2021;13. https://doi.org/10.3390/nu13093089.

  178. Beauchet O. Vitamin D insufficiency and mild cognitive impairment: cross-sectional association. Eur J Neurol. 2012;19:1023–9. https://doi.org/10.1111/j.1468-1331.2012.03675.x.

    Article  PubMed  Google Scholar 

  179. Bird ML, El Haber N, Batchelor F, Hill K, Wark JD. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women. Gait Posture. 2018;59:71–5. https://doi.org/10.1016/j.gaitpost.2017.09.036.

    Article  PubMed  Google Scholar 

  180. Eyles DW, Feron F, Cui X, Kesby JP, Harms LH, Ko P, McGrath JJ, Burne TH. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 2009;34 Suppl 1:S247–257. https://doi.org/10.1016/j.psyneuen.2009.04.015.

  181. Lee C, Seo H, Yoon SY, Chang SH, Park SH, Hwang JH, Kang K, Kim CH, Hahm MH, Park E, Ahn JY, Park KS. Clinical significance of vitamin D in idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien). 2021;163:1969–77. https://doi.org/10.1007/s00701-021-04849-5.

    Article  PubMed  Google Scholar 

  182. Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010;6:107–114.https://doi.org/10.4161/org.6.2.11687.

  183. Huang H, Yang J, Luciano M, Shriver LP. Longitudinal metabolite profiling of cerebrospinal fluid in normal pressure hydrocephalus links brain metabolism with exercise-induced VEGF production and clinical outcome. Neurochem Res. 2016;41:1713–22. https://doi.org/10.1007/s11064-016-1887-z.

    Article  CAS  PubMed  Google Scholar 

  184. Dombrowski SM, Deshpande A, Dingwall C, Leichliter A, Leibson Z, Luciano MG. Chronic hydrocephalus–induced hypoxia: Increased expression of VEGFR-2+ and blood vessel density in hippocampus. Neuroscience. 2008;152:346–59. https://doi.org/10.1016/j.neuroscience.2007.11.049.

    Article  CAS  PubMed  Google Scholar 

  185. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H, Kanemoto H, Suehiro T, Yoshiyama K, Kameda M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus (Third Edition): endorsed by the Japanese society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo). 2021;61:63–97. https://doi.org/10.2176/nmc.st.2020-0292.

    Article  PubMed  Google Scholar 

  186. Ott BR, Cohen RA, Gongvatana A, Okonkwo OC, Johanson CE, Stopa EG, Donahue JE, Silverberg GD. Brain ventricular volume and cerebrospinal fluid biomarkers of alzheimer’s disease. J Alzheimers Dis. 2010;20:647–57. https://doi.org/10.3233/jad-2010-1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bjerke M, Jonsson M, Nordlund A, Eckerstrom C, Blennow K, Zetterberg H, Pantoni L, Inzitari D, Schmidt R, Wallin A. Cerebrovascular biomarker profile is related to white matter disease and ventricular dilation in a LADIS substudy. Dementia and Geriatric Cognitive Disorders Extra. 2014;4:385–94. https://doi.org/10.1159/000366119.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kresge HA, Liu D, Gupta DK, Moore EE, Osborn KE, Acosta LMY, Bell SP, Pechman KR, Gifford KA, Mendes LA, et al. Lower left ventricular ejection fraction relates to cerebrospinal fluid biomarker evidence of neurodegeneration in older adults. J Alzheimers Dis. 2020;74:965–74. https://doi.org/10.3233/jad-190813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kaipainen A, Jääskeläinen O, Liu Y, Haapalinna F, Nykänen N, Vanninen R, Koivisto AM, Julkunen V, Remes AM, Herukka S-K. Cerebrospinal fluid and MRI biomarkers in neurodegenerative diseases: a retrospective memory clinic-based study. J Alzheimers Dis. 2020;75:751–65. https://doi.org/10.3233/jad-200175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This chapter was supported by the Ministry of Health of the Czech Republic institutional grant no. NU23-04–00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Bradáč .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bubeníková, A., Máčová, L., Skalický, P., Mládek, A., Bradáč, O. (2023). Laboratory Findings of NPH. In: Bradac, O. (eds) Normal Pressure Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-031-36522-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36522-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36521-8

  • Online ISBN: 978-3-031-36522-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics