Skip to main content

Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights

  • Chapter
  • First Online:
Dendritic Spines

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 34))

Abstract

The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian M, Kusters R, Wierenga CJ, Storm C, Hoogenraad CC, Kapitein LC (2014) Barriers in the brain: resolving dendritic spine morphology and compartmentalization. Front Neuroanat 8:142. Disponible sur: http://journal.frontiersin.org/article/10.3389/fnana.2014.00142/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Albarran E, Raissi A, Jáidar O, Shatz CJ, Ding JB (2021) Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron 109(20):3298–3311.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen P, Trommald M (1995) Possible strategies for finding the substrate for learning-induced changes in the hippocampal cortex. J Neurobiol 26(3):396–402

    Article  CAS  PubMed  Google Scholar 

  • Araya R (2014) Input transformation by dendritic spines of pyramidal neurons. Front Neuroanat 8:141. Disponible sur: http://journal.frontiersin.org/article/10.3389/fnana.2014.00141/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Arellano JI (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1(1):131–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Arellano JI, Espinosa A, Fairén A, Yuste R, DeFelipe J (2007) Non-synaptic dendritic spines in neocortex. Neuroscience 145(2):464–469

    Article  CAS  PubMed  Google Scholar 

  • Attardo A, Fitzgerald JE, Schnitzer MJ (2015) Impermanence of dendritic spines in live adult CA1 hippocampus. Nature 523(7562):592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azoulay L (1895) Psychologie histologique et texture du système nerveux. Année Psychol 2:255–294. https://doi.org/10.3406/psy.1895.1538

    Article  Google Scholar 

  • Azoulay L, Klippel M (1894) Les altérations des cellules de l’écorce cérébrale dans la paralysie générale, étudiées par la méthode de Golgi. C R Seances Soc Biol Fil 46:405–407

    Google Scholar 

  • Barbara J-G (2006) The physiological construction of the neurone concept (1891–1952). C R Biol 329(5–6):437–449

    Article  PubMed  Google Scholar 

  • Bennett MR (1999) The early history of the synapse: from Plato to Sherrington. Brain Res Bull 50(2):95–118. https://doi.org/10.1016/s0361-9230(99)00094-5

    Article  CAS  PubMed  Google Scholar 

  • Bennett EL, Diamond MC, Krech D, Rosenzweig MR (1964) Chemical and anatomical plasticity of brain: changes in brain through experience, demanded by learning theories, are found in experiments with rats. Science 146(3644):610–619

    Article  CAS  PubMed  Google Scholar 

  • Berkley HJ (1896) Studies on the lesions produced by the action of certain poisons on the cortical nerve cell. Johns Hopkins Hospital Reports Vol 6. Rep Neurol 3:1–92

    Google Scholar 

  • Berlucchi G, Buchtel HA (2009) Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res 192(3):307–319

    Article  CAS  PubMed  Google Scholar 

  • Bhatt DH, Zhang S, Gan W-B (2009) Dendritic spine dynamics. Annu Rev Physiol 71(1):261–282

    Article  CAS  PubMed  Google Scholar 

  • Bian W-J, Miao W-Y, He S-J, Qiu Z, Yu X (2015) Coordinated spine pruning and maturation mediated by inter-spine competition for cadherin/catenin complexes. Cell 162(4):808–822

    Article  CAS  PubMed  Google Scholar 

  • Black SE (1981) Pseudopods and synapses: the amoeboid theories of neuronal mobility and the early formulation of the synapse concept, 1894–1900. Bull Hist Med 55:34–58

    CAS  PubMed  Google Scholar 

  • Bliss TVP, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35(6):1019–1027. https://doi.org/10.1016/s0896-6273(02)00906-6

    Article  CAS  PubMed  Google Scholar 

  • Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82(2):444–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17(3):381–386

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68(3):362–385

    Article  PubMed  PubMed Central  Google Scholar 

  • Cane M, Maco B, Knott G, Holtmaat A (2014) The relationship between PSD-95 clustering and spine stability in vivo. J Neurosci 34(6):2075–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin RK, Siekevitz P (1983) Plasticity in the central nervous system: do synapses divide? Proc Natl Acad Sci U S A 80(11):3517–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13(7):478–490

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Leischner U, Rochefort NL, Nelken I, Konnerth A (2011) Functional mapping of single spines in cortical neurons in vivo. Nature 475(7357):501–505

    Article  CAS  PubMed  Google Scholar 

  • Chen C-C, Lu J, Zuo Y (2014) Spatiotemporal dynamics of dendritic spines in the living brain. Front Neuroanat 8:28. Disponible sur: http://journal.frontiersin.org/article/10.3389/fnana.2014.00028/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi J-H, Sim S-E, Kim J, Choi DI, Oh J, Ye S et al (2018) Interregional synaptic maps among engram cells underlie memory formation. Science 360(6387):430–435

    Article  CAS  PubMed  Google Scholar 

  • Clark TA, Fu M, Dunn AK, Zuo Y, Jones TA (2018) Preferential stabilization of newly formed dendritic spines in motor cortex during manual skill learning predicts performance gains, but not memory endurance. Neurobiol Learn Mem 152:50–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb M (2020) The idea of the brain. Basic Books

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9(2):268–287

    Article  CAS  PubMed  Google Scholar 

  • Cornejo VH, Ofer N, Yuste R (2022) Voltage compartmentalization in dendritic spines in vivo. Science 375(6576):82–86

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science 225(4668):1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Crome L (1972) Morphological aspects of mental retardation. Proc R Soc Med 65(7):587–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dailey ME, Smith SJ (1996) The dynamics of dendritic structure in developing hippocampal slices. J Neurosci 16(9):2983–2994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Roo M, Klauser P, Muller D (2008) LTP promotes a selective long-term stabilization and clustering of dendritic spines. Sheng M, éditeur. PLoS Biol 6(9):e219

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFelipe J (2006) Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci 7(10):811–817

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J (2015) The dendritic spine story: an intriguing process of discovery. Front Neuroanat 9:14. Disponible sur: http://journal.frontiersin.org/Article/10.3389/fnana.2015.00014/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • DeFelipe J, Conti F, Van Eyck SL, Manzoni T (1988) Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex. Brain Res 455(1):162–165

    Article  CAS  PubMed  Google Scholar 

  • Demoor J (1896a) La plasticité morphologique des neurones cérébraux. Arch Biol Brux 14:723–752

    Google Scholar 

  • Demoor J (1896b) La plasticité morphologique des neurones cérébraux. In: Heger P (ed) Travaux de laboratoire de l’Institut Solvay. Fascicule 1. Institut Solvay, Bruxelles

    Google Scholar 

  • Demoor J (1898) Le mécanisme et la signification de l’état moniliforme des neurones. In: Heger P (ed) Travaux de laboratoire de l’Institut Solvay, vol 2, Fascicule 1. Institut Solvay, Bruxelles, pp 1–46

    Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  • Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30(44):14610–14618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos M, Salery M, Forget B, Garcia Perez MA, Betuing S, Boudier T et al (2017) Rapid synaptogenesis in the nucleus accumbens is induced by a single cocaine administration and stabilized by mitogen-activated protein kinase interacting kinase-1 activity. Biol Psychiatry 82(11):806–818

    Article  PubMed  Google Scholar 

  • Dos Santos M, Cahill EN, Bo GD, Vanhoutte P, Caboche J, Giros B et al (2018) Cocaine increases dopaminergic connectivity in the nucleus accumbens. Brain Struct Funct 223(2):913–923

    Article  PubMed  Google Scholar 

  • Dunaevsky A, Tashiro A, Majewska A, Mason C, Yuste R (1999) Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci U S A 96(23):13438–13443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duval M (1895) Hypothèses sur la physiologie des centres nerveux; théorie histologique du sommeil. C R Soc De Biol 47:74–77

    Google Scholar 

  • El-Boustani S, Ip JPK, Breton-Provencher V, Knott GW, Okuno H, Bito H et al (2018) Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360(6395):1349–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399(6731):66–70

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Allwardt B, Harris KM (2002a) Dendritic spines do not split during hippocampal LTP or maturation. Nat Neurosci 5(4):297–298

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002b) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39(1):29–54

    Article  PubMed  Google Scholar 

  • Fifková E, Delay RJ (1982) Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J Cell Biol 95(1):345–350

    Article  PubMed  Google Scholar 

  • Fifková E, van Harreveld A (1977) Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area. J Neurocytol 6(2):211–230

    Article  PubMed  Google Scholar 

  • Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20(5):847–854

    Article  CAS  PubMed  Google Scholar 

  • Forrest MP, Parnell E, Penzes P (2018) Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci 19(4):215–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank AC, Huang S, Zhou M, Gdalyahu A, Kastellakis G, Silva TK et al (2018) Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. Nat Commun 9(1):422

    Article  PubMed  PubMed Central  Google Scholar 

  • Fremeau RT, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27(2):98–103

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483(7387):92–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhrmann M, Gockel N, Arizono M, Dembitskaya Y, Nägerl UV, Pennacchietti F et al (2022) Super-resolution microscopy opens new doors to life at the nanoscale. J Neurosci 42(45):8488–8497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-López P, García-Marín V, Freire M (2007) The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol 83(2):110–130

    Article  PubMed  Google Scholar 

  • Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgiou C, Kehayas V, Lee KS, Brandalise F, Sahlender DA, Blanc J et al (2022) A subpopulation of cortical VIP-expressing interneurons with highly dynamic spines. Commun Biol 5(1):352

    Article  PubMed  PubMed Central  Google Scholar 

  • Globus A, Scheibel AB (1967) The effect of visual deprivation on cortical neurons: a Golgi study. Exp Neurol 19(3):331–345. https://doi.org/10.1016/0014-4886(67)90029-5

    Article  CAS  PubMed  Google Scholar 

  • Globus A, Rosenzweig MR, Bennett EL, Diamond MC (1973) Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol 82(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Gonatas NK (1967) Axonic and synaptic lesions in neuropsychiatric disorders. Nature 214(5086):352–355

    Article  CAS  PubMed  Google Scholar 

  • Gonatas NK, Moss A (1975) Pathologic axons and synapses in human neuropsychiatric disorders. Hum Pathol 6(5):571–582

    Article  CAS  PubMed  Google Scholar 

  • Goto A, Bota A, Miya K, Wang J, Tsukamoto S, Jiang X et al (2021) Stepwise synaptic plasticity events drive the early phase of memory consolidation. Science 374(6569):857–863

    Article  CAS  PubMed  Google Scholar 

  • Granak S, Hoschl C, Ovsepian SV (2021) Dendritic spine remodeling and plasticity under general anesthesia. Brain Struct Funct 226(7):2001–2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray EG (1959a) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183(4675):1592–1593. https://doi.org/10.1038/1831592a0

    Article  CAS  PubMed  Google Scholar 

  • Gray EG (1959b) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93(Pt 4):420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan W-B (2002) Long-term dendritic spine stability in the adult cortex. Nature 420(6917):812–816

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Kleiber S, Schmid L, Nebeling F, Chamoun M, Steffen J et al (2014) Long-term in vivo imaging of dendritic spines in the hippocampus reveals structural plasticity. J Neurosci Off J Soc Neurosci 34(42):13948–13953

    Article  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371. https://doi.org/10.1146/annurev.ne.17.030194.002013

    Article  CAS  PubMed  Google Scholar 

  • Harris K, Stevens J (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8(12):4455–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris K, Stevens J (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9(8):2982–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris KM, Weinberg RJ (2012) Ultrastructure of synapses in the mammalian brain. Cold Spring Harb Perspect Biol 4(5):a005587

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL et al (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525(7569):333–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick NG, Lu Z, Bushong E, Singhi S, Nguyen P, Magaña Y et al (2022) Learning binds new inputs into functional synaptic clusters via spinogenesis. Nat Neurosci 25(6):726–737

    Article  CAS  PubMed  Google Scholar 

  • Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ (2013) Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry 70(11):1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Helm MS, Dankovich TM, Mandad S, Rammner B, Jähne S, Salimi V et al (2021) A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines. Nat Neurosci 24(8):1151–1162

    Article  CAS  PubMed  Google Scholar 

  • Hill TC, Zito K (2013) LTP-induced long-term stabilization of individual nascent dendritic spines. J Neurosci 33(2):678–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holler S, Köstinger G, Martin KAC, Schuhknecht GFP, Stratford KJ (2021) Structure and function of a neocortical synapse. Nature 591(7848):111–116

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Caroni P (2016) Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 19(12):1553–1562

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat AJGD, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW et al (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Horner CH (1993) Plasticity of the dendritic spine. Prog Neurobiol 41(3):281–321

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Bliss TV, Fine A (1992) Persistence of individual dendritic spines in living brain slices. Neuroreport 3(6):477–480. https://doi.org/10.1097/00001756-199206000-00005

    Article  CAS  PubMed  Google Scholar 

  • Hwang F-J, Roth RH, Wu Y-W, Sun Y, Kwon DK, Liu Y et al (2022) Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons. Neuron 110(17):2790–2801.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenks KR, Tsimring K, Ip JPK, Zepeda JC, Sur M (2021) Heterosynaptic plasticity and the experience-dependent refinement of developing neuronal circuits. Front Neural Circuits 15:803401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293):1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2000) NEUROwords. 8. Plasticity and neuroplasticity. J Hist Neurosci 9(1):37–39

    Article  PubMed  Google Scholar 

  • Jones EG (2004) Plasticity and neuroplasticity. J Hist Neurosci 13(3):293

    Article  PubMed  Google Scholar 

  • Jones EG, Powell TP (1969) Morphological variations in the dendritic spines of the neocortex. J Cell Sci 5(2):509–529. https://doi.org/10.1242/jcs.5.2.509

    Article  CAS  PubMed  Google Scholar 

  • Josselyn SA, Tonegawa S (2020) Memory engrams: recalling the past and imagining the future. Science 367(6473):eaaw4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacher R, Lamazière A, Heck N, Kappes V, Mounier C, Despres G et al (2019) CYP46A1 gene therapy deciphers the role of brain cholesterol metabolism in Huntington’s disease. Brain 142(8):2432–2450

    Article  PubMed  Google Scholar 

  • Kandel ER, Spencer WA (1968) Cellular neurophysiological approaches in the study of learning. Physiol Rev 48(1):65–134

    Article  CAS  PubMed  Google Scholar 

  • Kasai H, Hayama T, Ishikawa M, Watanabe S, Yagishita S, Noguchi J (2010) Learning rules and persistence of dendritic spines: learning rules of dendritic spines. Eur J Neurosci 32(2):241–249

    Article  PubMed  Google Scholar 

  • Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S et al (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661

    Article  CAS  PubMed  Google Scholar 

  • Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K (2006) Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 9(9):1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Korogod N, Petersen CC, Knott GW (2015) Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4:e05793

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota Y, Karube F, Nomura M, Kawaguchi Y (2016) The diversity of cortical inhibitory synapses. Front Neural Circuits 10:27. Disponible sur: http://journal.frontiersin.org/Article/10.3389/fncir.2016.00027/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474(7349):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon T, Merchán-Pérez A, Rial Verde EM, Rodríguez J-R, DeFelipe J, Yuste R (2019) Ultrastructural, molecular and functional mapping of GABAergic synapses on dendritic spines and shafts of neocortical pyramidal neurons. Cereb Cortex 29(7):2771–2781

    Article  PubMed  Google Scholar 

  • Lai CSW, Franke TF, Gan W-B (2012) Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483(7387):87–91

    Article  CAS  PubMed  Google Scholar 

  • Lai CSW, Adler A, Gan W-B (2018) Fear extinction reverses dendritic spine formation induced by fear conditioning in the mouse auditory cortex. Proc Natl Acad Sci U S A 115(37):9306–9311

    Article  PubMed  PubMed Central  Google Scholar 

  • Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881

    Article  CAS  PubMed  Google Scholar 

  • Lépine R (1894) Sur un cas d’hystérie á form particulière. Rev Méd 14:713–728

    Google Scholar 

  • LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol 150(1):53–85

    Article  CAS  PubMed  Google Scholar 

  • Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Zuo Y (2017) Clustered structural and functional plasticity of dendritic spines. Brain Res Bull 129:18–22

    Article  PubMed  Google Scholar 

  • Lu J, Zuo Y (2021) Shedding light on learning and memory: optical interrogation of the synaptic circuitry. Curr Opin Neurobiol 67:138–144

    Article  CAS  PubMed  Google Scholar 

  • Lugaro E (1895) Sulle modificazionedelle cellule nervose etc. nei diversi stati funzionali. Lo Sperimentale, t. XLIX

    Google Scholar 

  • Lugaro E (1896) Nuovi dati e nuovi problemi nella patologia della cellula nervosa. Riv Patol Nerv Ment 1(8):2

    Google Scholar 

  • Lugaro E (1898a) Le resistenze nell’evoluzione della vita. Riv Mod Cult 1:29–60

    Google Scholar 

  • Lugaro E (1898b) Sulle modificazioni morfologiche funzionali dei dendriti delle cellule nervose. Riv Patol Nerv Ment 3(8):350–351

    Google Scholar 

  • MacAskill AF, Cassel JM, Carter AG (2014) Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nat Neurosci 17(9):1198–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewska AK, Newton JR, Sur M (2006) Remodeling of synaptic structure in sensory cortical areas in vivo. J Neurosci 26(11):3021–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283(5409):1923–1927

    Article  CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res 44(2):625–629

    Article  CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1974) Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. I. D1 (13–15) trisomy, Patau syndrome. Brain Res 66(3):375–391

    Article  Google Scholar 

  • Matsuzaki M, Ellis-Davies GCR, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4(11):1086–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc Natl Acad Sci U S A 79(23):7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443

    Article  CAS  PubMed  Google Scholar 

  • Miller M, Peters A (1981) Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J Comp Neurol 203(4):555–573

    Article  CAS  PubMed  Google Scholar 

  • Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB (2010) Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67(6):1009–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizrahi A, Katz LC (2003) Dendritic stability in the adult olfactory bulb. Nat Neurosci 6(11):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi A, Crowley JC, Shtoyerman E, Katz LC (2004) High-resolution in vivo imaging of hippocampal dendrites and spines. J Neurosci Off J Soc Neurosci 24(13):3147–3151

    Article  CAS  Google Scholar 

  • Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN et al (2019) Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364(6436):eaat8078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monti A (1895) Sur les altérations du système nerveux dans l’inanition. Arch Ital Biol 24:347–360

    Google Scholar 

  • Morange M (2021) A history of biology. Princeton University Press

    Book  Google Scholar 

  • Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91(26):12673–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller D, Toni N, Buchs P-A (2000) Spine changes associated with long-term potentiation. Hippocampus 10(5):596–604

    Article  CAS  PubMed  Google Scholar 

  • Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nägerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44(5):759–767

    Article  PubMed  Google Scholar 

  • Nakai N, Takumi T, Nakai J, Sato M (2018) Common defects of spine dynamics and circuit function in neurodevelopmental disorders: a systematic review of findings from in vivo optical imaging of mouse models. Front Neurosci 12:412

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GCR, Kitamura K, Kano M et al (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice: in vivo two-photon glutamate uncaging. J Physiol 589(10):2447–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi J, Nagaoka A, Hayama T, Ucar H, Yagishita S, Takahashi N et al (2019) Bidirectional in vivo structural dendritic spine plasticity revealed by two-photon glutamate uncaging in the mouse neocortex. Sci Rep 9(1):13922

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofer N, Berger DR, Kasthuri N, Lichtman JW, Yuste R (2021) Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies. Dev Neurobiol 81(5):746–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Ofer N, Benavides-Piccione R, DeFelipe J, Yuste R (2022) Structural analysis of human and mouse dendritic spines reveals a morphological continuum and differences across ages and species. eNeuro 9(3):ENEURO.0039-22.2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh WC, Parajuli LK, Zito K (2015) Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep 10(2):162–169

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Segal M (1996) Morphological plasticity in dendritic spines of cultured hippocampal neurons. Neuroscience 71(4):1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Parajuli LK, Urakubo H, Takahashi-Nakazato A, Ogelman R, Iwasaki H, Koike M et al (2020) Geometry and the organizational principle of spine synapses along a dendrite. eNeuro 7(6):ENEURO.0248-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel SN, Rose SPR, Stewart MG (1988) Training induced dendritic spine density changes are specifically related to memory formation processes in the chick, Gallus domesticus. Brain Res 463(1):168–173

    Article  CAS  PubMed  Google Scholar 

  • Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127(4):321–355. https://doi.org/10.1002/aja.1001270402

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, Webster H (1976) The fine structure of the nervous system. Saunders, Philadelphia

    Google Scholar 

  • Peters AJ, Chen SX, Komiyama T (2014) Emergence of reproducible spatiotemporal activity during motor learning. Nature 510(7504):263–267

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer T, Poll S, Bancelin S, Angibaud J, Inavalli VK, Keppler K et al (2018) Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. eLife 7:e34700

    Article  PubMed  PubMed Central  Google Scholar 

  • Popov VI, Bocharova LS, Bragin AG (1992) Repeated changes of dendritic morphology in the hippocampus of ground squirrels in the course of hibernation. Neuroscience 48(1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Purpura DP (1974) Dendritic spine “dysgenesis” and mental retardation. Science 186(4169):1126–1128. https://doi.org/10.1126/science

    Article  CAS  PubMed  Google Scholar 

  • Purpura DP (1975) Normal and aberrant neuronal development in the cerebral cortex of human fetus and young infant. In: Buchwald NA, Brazier MAB (eds) Brain mechanisms in mental retardation. Academic Press, pp 141–169

    Chapter  Google Scholar 

  • Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM (2016) Dendritic spines in depression: what we learned from animal models. Neural Plast 2016:8056370

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao Q, Wu C, Ma L, Zhang H, Li M, Wu X et al (2022) Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines. Cell Rep 40(7):111229

    Article  CAS  PubMed  Google Scholar 

  • Querton L (1898) Le sommeil hibernal et les modifications des neurones cérébraux. In: Heger P (ed) Travaux de laboratoire de l’Institut Solvay, vol 2, Fascicule 1. Institut Solvay, Bruxelles, pp 1–58

    Google Scholar 

  • Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14(1):25–48

    Article  CAS  PubMed  Google Scholar 

  • Ramiro-Cortés Y, Hobbiss AF, Israely I (2014) Synaptic competition in structural plasticity and cognitive function. Philos Trans R Soc Lond B Biol Sci 369(1633):20130157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramón y Cajal S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Normal Patol 1:1–10

    Google Scholar 

  • Ramón y Cajal S (1892) Nuevo concepto de la histología de los centros nerviosos. Rev Cienc Méd Barc 18:363–376; 457–476; 505–520; 529–540

    Google Scholar 

  • Ramón y Cajal S (1894a) Les nouvelles idées sur la structure du systeème nerveux chez l’homme et chez les vertébrés (trans: Azoulay L). C. Reinwald & Cie, Paris

    Google Scholar 

  • Ramón y Cajal S (1894b) The Croonian lecture: la fine structure des centres nerveux. Proc R Soc Lond 55:444–468

    Article  Google Scholar 

  • Ramón y Cajal S (1895) Algunas conjeturas sobre el mecanismo anatómico de la ideación, asociación y atención. Rev Med Cirug Prác 36:497–508

    Google Scholar 

  • Ramón y Cajal S (1899–1904) Textura del sistema nervioso del hombre y de los vertebrados. Imprenta y Librería de Nicolás Moya, Madrid

    Google Scholar 

  • Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vertébrés (trans: Azoulay L). Maloine, Paris

    Google Scholar 

  • Ramón y Cajal S (1933) Neuronismo o reticularismo? Las pruebas objetivas de la unidad anatomica de las celulas nerviosas. Consejo Superior de Investigaciones Cientıficas, Instituto Ramón y Cajal. IX, Madrid

    Google Scholar 

  • Richards DA, Mateos JM, Hugel S, de Paola V, Caroni P, Gähwiler BH et al (2005) Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proc Natl Acad Sci U S A 102(17):6166–6171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenzweig MR, Mollgaard K, Diamond MC, Bennett EL (1972) Negative as well as positive synaptic changes may store memory. Psychol Rev 79(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Runge K, Cardoso C, de Chevigny A (2020) Dendritic spine plasticity: function and mechanisms. Front Synaptic Neurosci 12:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saarikangas J, Kourdougli N, Senju Y, Chazal G, Segerstråle M, Minkeviciene R et al (2015) MIM-induced membrane bending promotes dendritic spine initiation. Dev Cell 33(6):644–659

    Article  CAS  PubMed  Google Scholar 

  • Schapiro S, Vukovich KR (1970) Early experience effects upon cortical dendrites: a proposed model for development. Science 167(3916):292–294

    Article  CAS  PubMed  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses. J Neurosci 17(15):5858–5867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M (2005) Dendritic spines and long-term plasticity. Nat Rev Neurosci 6(4):277–284

    Article  CAS  PubMed  Google Scholar 

  • Segal M (2017) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem 138:3–9

    Article  PubMed  Google Scholar 

  • Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K et al (2021) Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109(16):2535–2544.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn J, Suzuki M, Youssef M, Hatada S, Larkum ME, Kawaguchi Y et al (2022) Presynaptic supervision of cortical spine dynamics in motor learning. Sci Adv 8(30):eabm0531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solvay E (1894) Du rôle de l’électricité dans les phénomènes de la vie animale. Hayez, Bruxelles

    Google Scholar 

  • Sotelo C (1978) Purkinje cell ontogeny: formation and maintenance of spines. In: Progress in brain research. Elsevier, pp 149–170. Disponible sur: https://linkinghub.elsevier.com/retrieve/pii/S0079612308610213

    Google Scholar 

  • Sotelo C (2020) The history of the synapse. Anat Rec 303(5):1252–1279

    Article  Google Scholar 

  • Soukhanoff S (1898) Contribution à l’étude des modifications que subissent les prolongements dendritiques des cellules nerveuses sous l’influence des narcotiques. In: Van Gehuchten A (ed) Travaux du laboratoire de neurologie. Fascicule 2. Université de Louvain, Institut Vésale, Louvain

    Google Scholar 

  • Stahnisch FW (2003) Making the brain plastic: early neuroanatomical staining techniques and the pursuit of structural plasticity, 1910–1970. J Hist Neurosci 12(4):413–435

    Article  PubMed  Google Scholar 

  • Stefanowska M (1897a) Les appendices terminaux des dendrites cérébraux et leur différents états physiologiques. Ann Soc R Sci Méd Nat Brux 6:351–407

    Google Scholar 

  • Stefanowska M (1897b) Les appendices terminaux des dendrites cérébraux. In: Heger P (ed) Travaux de laboratoire de l’Institut Solvay. Fascicule 3. Institut Solvay, Bruxelles

    Google Scholar 

  • Stefanowska M (1900) Localisation des altérations cérébrales produites par l’éther. In: Heger P (ed) Travaux de laboratoire de l’Institut Solvay, vol 3, Fascicule 3. Institut Solvay, Bruxelles, pp 25–81

    Google Scholar 

  • Steffens H, Mott AC, Li S, Wegner W, Švehla P, Kan VWY et al (2021) Stable but not rigid: chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. Sci Adv 7(24):eabf2806

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein IS, Zito K (2019) Dendritic spine elimination: molecular mechanisms and implications. Neuroscientist 25(1):27–47

    Article  CAS  PubMed  Google Scholar 

  • Tamada H, Blanc J, Korogod N, Petersen CC, Knott GW (2020) Ultrastructural comparison of dendritic spine morphology preserved with cryo and chemical fixation. eLife 9:e56384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanzi E (1893) I fatti e le induzione nell’odierna istologia del sistema nervoso. Riv Sper Freniatr Med Leg 19:419–472

    Google Scholar 

  • Toni N, Buchs P-A, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402(6760):421–425

    Article  CAS  PubMed  Google Scholar 

  • Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17(5):678–685

    Article  PubMed  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E et al (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–794

    Article  CAS  PubMed  Google Scholar 

  • Tropea D, Majewska AK, Garcia R, Sur M (2010) Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex. J Neurosci 30(33):11086–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi S, Hayashi-Takagi A (2021) Optical interrogation of multi-scale neuronal plasticity underlying behavioral learning. Curr Opin Neurobiol 67:8–15

    Article  CAS  PubMed  Google Scholar 

  • Uchizono K (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207(4997):642–643

    Article  CAS  PubMed  Google Scholar 

  • Valverde P (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3(4):337–352. Disponible sur: http://link.springer.com/10.1007/BF00237559

    Article  CAS  PubMed  Google Scholar 

  • van Harreveld A, Fifkova E (1975) Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol 49(3):736–749

    Article  PubMed  Google Scholar 

  • Vaughn JE (1989) Review: Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3(3):255–285

    Article  CAS  PubMed  Google Scholar 

  • Volkmar FR, Greenough WT (1972) Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 176(4042):1445–1447

    Article  CAS  PubMed  Google Scholar 

  • Wiedersheim R (1890) Bewegungserscheinungen im gehirn von leptodora hyalina. Anat Anz 5:673–679

    Google Scholar 

  • Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional structure of dendritic spines in the rat neostriatum. J Neurosci 3(2):383–388. https://doi.org/10.1523/JNEUROSCI.03-02-00383.1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DE, Whitney DE, Scholl B, Fitzpatrick D (2016) Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 19(8):1003–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Yu J, Huang X, Sesack SR, Huang YH, Schlüter OM et al (2020) Cortical and thalamic interaction with amygdala-to-accumbens synapses. J Neurosci 40(37):7119–7132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H-T, Pan F, Yang G, Gan W-B (2007) Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5):549–551

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K et al (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462(7275):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Adler A, Li H, Pérez-Cuesta LM, Lai B, Li W et al (2019) Fear conditioning and extinction induce opposing changes in dendritic spine remodeling and somatic activity of layer 5 pyramidal neurons in the mouse motor cortex. Sci Rep 9(1):4619

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, Urakubo H, Ishii S, Kasai H (2014) A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345(6204):1616–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Pan F, Gan W-B (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G, Chang PC, Bekker A, Blanck TJJ, Gan W-B (2011) Transient effects of anesthetics on dendritic spines and filopodia in the living mouse cortex. Anesthesiology 115(4):718–726

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan W-B (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344(6188):1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Liu D, Huang W, Deng J, Sun Y, Zuo Y et al (2016) Selective synaptic remodeling of amygdalocortical connections associated with fear memory. Nat Neurosci 19(10):1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Yuste R (2013) Electrical compartmentalization in dendritic spines. Annu Rev Neurosci 36(1):429–449

    Article  CAS  PubMed  Google Scholar 

  • Yuste R (2015) The discovery of dendritic spines by Cajal. Front Neuroanat 9:18. Disponible sur: http://journal.frontiersin.org/article/10.3389/fnana.2015.00018/abstract

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24(1):1071–1089

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5(1):24–34

    Article  CAS  PubMed  Google Scholar 

  • Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684

    Article  CAS  PubMed  Google Scholar 

  • Zaccard CR, Gippo I, Song A, Geula C, Penzes P (2023) Dendritic spinule-mediated structural synaptic plasticity: implications for development, aging, and psychiatric disease. Front Mol Neurosci 16:1059730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai S, Ark ED, Parra-Bueno P, Yasuda R (2013) Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342(6162):1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Lai B, Gan W-B (2017) Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex. Sci Rep 7(1):4977

    Article  PubMed  PubMed Central  Google Scholar 

  • Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61(2):247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Zuo Y, Lin A, Chang P, Gan W-B (2005) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181–189

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jean-Gaël Barbara for comments on an earlier version of Sect. 7.1. Figures 7.5 and 7.6 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Heck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heck, N., Santos, M.D. (2023). Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. In: Rasia-Filho, A.A., Calcagnotto, M.E., von Bohlen und Halbach, O. (eds) Dendritic Spines. Advances in Neurobiology, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-031-36159-3_7

Download citation

Publish with us

Policies and ethics