Skip to main content

Robotic Microsurgery

  • Chapter
  • First Online:
Robotic Surgery Devices in Surgical Specialties

Abstract

Microsurgery has long been a challenging field for surgeons. Many attempts have been made to ameliorate this technique. One of the most remarkable advancements in this field was made by robotic platforms. Absent tremor, improved precision, increased optical magnification, and optimizable instrumentation are the primary advantages of these platforms. On the other hand, maintenance and overall cost still appear to be limiting factors. In this chapter, we covered novel advancements in robotic microsurgery and existing technologies that are available for a more convenient microsurgical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  PubMed  Google Scholar 

  2. Lane T. A short history of robotic surgery. Ann R Coll Surg Engl. 2018;100(6_sup):5–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Etafy M, Gudeloglu A, Brahmbhatt JV, Parekattil SJ. Review of the role of robotic surgery in male infertility. Arab J Urol. 2018;16(1):148–56.

    Article  PubMed  Google Scholar 

  4. Lindenblatt N, Grünherz L, Wang A, Gousopoulos E, Barbon C, Uyulmaz S, et al. Early experience using a new robotic microsurgical system for lymphatic surgery. Plast Reconstr Surg Glob Open. 2022;10(1):e4013.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Mulken TJM, Schols RM, Scharmga AMJ, Winkens B, Cau R, Schoenmakers FBF, et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun. 2020;11(1):757.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Mulken TJM, Wolfs J, Qiu SS, Scharmga AMJ, Schols RM, Spiekerman van Weezelenburg MA, et al. One-year outcomes of the first human trial on robot-assisted Lymphaticovenous anastomosis for breast cancer-related lymphedema. Plast Reconstr Surg. 2022;149(1):151–61.

    Article  PubMed  Google Scholar 

  7. Fan S, Dai X, Yang K, Xiong S, Xiong G, Li Z, et al. Robot-assisted pyeloplasty using a new robotic system, the KangDuo-surgical Robot-01: a prospective, single-centre, single-arm clinical study. BJU Int. 2021;128(2):162–5.

    Article  PubMed  Google Scholar 

  8. Wang J, Fan S, Shen C, Yang K, Li Z, Xiong S, et al. Partial nephrectomy through retroperitoneal approach with a new surgical robot system, KD-SR-01. Int J Med Robot. 2022;18(2):e2352.

    Article  PubMed  Google Scholar 

  9. Fan S, Zhang Z, Wang J, Xiong S, Dai X, Chen X, et al. Robot-assisted radical prostatectomy using the KangDuo surgical Robot-01 system: a prospective, single-center, single-arm clinical study. J Urol. 2022;208(1):119–27.

    Article  PubMed  Google Scholar 

  10. Fan S, Xiong S, Li Z, Yang K, Wang J, Han G, et al. Pyeloplasty with the Kangduo surgical robot vs. the da Vinci Si robotic system: preliminary results. J Endourol. 2022;36:1538.

    Article  PubMed  Google Scholar 

  11. Crew B. A closer look at a revered robot. Nature. 2020;580(7804):S5–7.

    Article  Google Scholar 

  12. Gudeloglu A, Brahmbhatt JV, Parekattil SJ. Robotic-assisted microsurgery for an elective microsurgical practice. Semin Plast Surg. 2014;28(1):11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jourdes F, Valentin B, Allard J, Duriez C, Seeliger B. Visual haptic feedback for training of robotic suturing. Front Robot AI. 2022;9:800232.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jewell EL, Huang JJ, Abu-Rustum NR, Gardner GJ, Brown CL, Sonoda Y, et al. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol Oncol. 2014;133(2):274–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dijkstra BM, Jeltema HJR, Kruijff S, Groen RJM. The application of fluorescence techniques in meningioma surgery—a review. Neurosurg Rev. 2019;42(4):799–809.

    Article  PubMed  Google Scholar 

  16. Wada H, Hirohashi K, Anayama T, Nakajima T, Kato T, Chan HH, et al. Minimally invasive electro-magnetic navigational bronchoscopy-integrated near-infrared-guided sentinel lymph node mapping in the porcine lung. PloS One. 2015;10(5):e0126945.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaplan-Marans E, Fulla J, Tomer N, Bilal K, Palese M. Indocyanine green (ICG) in urologic surgery. Urology. 2019;132:10–7.

    Article  PubMed  Google Scholar 

  18. Tobis S, Knopf JK, Silvers C, Messing E, Yao J, Rashid H, et al. Robot-assisted and laparoscopic partial nephrectomy with near infrared fluorescence imaging. J Endourol. 2012;26(7):797–802.

    Article  PubMed  Google Scholar 

  19. Simone G, Tuderti G, Anceschi U, Ferriero M, Costantini M, Minisola F, et al. “Ride the green light”: Indocyanine green-marked off-clamp robotic partial nephrectomy for totally endophytic renal masses. Eur Urol. 2019;75(6):1008–14.

    Article  PubMed  Google Scholar 

  20. Hess HA. A biomedical device to improve pediatric vascular access success. Pediatr Nurs. 2010;36(5):259–63.

    PubMed  Google Scholar 

  21. Gupta A, Sunil K, Singh GP, Kureel SN. Study of variations in axial pattern vessels of penile Dartos in hypospadias and implied surgical significance. Urology. 2020;146:201–6.

    Article  PubMed  Google Scholar 

  22. Ryan RW, Spetzler RF, Preul MC. Aura of technology and the cutting edge: a history of lasers in neurosurgery. Neurosurg Focus. 2009;27(3):E6.

    Article  PubMed  Google Scholar 

  23. Chen SX, Cheng J, Watchmaker J, Dover JS, Chung HJ. Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg. 2022;48(4):441–8.

    Article  PubMed  Google Scholar 

  24. Wang C, Zhao Y, Li C, Song Q, Wang F. Meta-analysis of low temperature plasma radiofrequency ablation and CO(2) laser surgery on early Glottic laryngeal carcinoma. Comput Math Methods Med. 2022;2022:3417005.

    PubMed  PubMed Central  Google Scholar 

  25. Candiani M, Ottolina J, Tandoi I, Bartiromo L, Schimberni M, Villanacci R, et al. Fertility sparing procedure using carbon dioxide fiber laser vaporization of ovarian Endometrioma. J Vis Exp. 2022;(185).

    Google Scholar 

  26. Brahmbhatt JV, Gudeloglu A, Liverneaux P, Parekattil SJ. Robotic microsurgery optimization. Arch Plast Surg. 2014;41(3):225–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gudeloglu A, Kattoor AJ, Brahmbhatt J, Parekattil S, Agarwal A. Prospective control trial: flexible CO(2) laser vs. monopolar electrocautery for robotic microsurgical denervation of the spermatic cord. Int J Impot Res. 2020;32(6):623–7.

    Article  PubMed  Google Scholar 

  28. Toth S, Vajda J, Pasztor E, Toth Z. Separation of the tumor and brain surface by “water jet” in cases of meningiomas. J Neurooncol. 1987;5(2):117–24.

    Article  PubMed  Google Scholar 

  29. Tschan CA, Tschan K, Krauss JK, Oertel J. First experimental results with a new waterjet dissector: Erbejet 2. Acta Neurochir. 2009;151(11):1473–82.

    Article  PubMed  Google Scholar 

  30. Abdessater M, Elias S, Boustany J, El Khoury R. Bilateral laparoscopic ureterolysis using hydrodissection in retroperitoneal fibrosis: a new application of an old technique. Res Rep Urol. 2019;11:131–5.

    PubMed  PubMed Central  Google Scholar 

  31. Gudeloglu A, Brahmbhatt JV, Allan R, Parekattil SJ. Hydrodissection for improved microsurgical denervation of the spermatic cord: prospective blinded randomized control trial in a rat model. Int J Impot Res. 2021;33(1):118–21.

    Article  PubMed  Google Scholar 

  32. Parekattil SJ, Gudeloglu A. Robotic assisted andrological surgery. Asian J Androl. 2013;15(1):67–74.

    Article  PubMed  Google Scholar 

  33. Parekattil SJ, Ergun O, Gudeloglu A. Management of chronic orchialgia: challenges and solutions–the current standard of care. Res Rep Urol. 2020;12:199.

    PubMed  PubMed Central  Google Scholar 

  34. Parekattil S, Gudeloglu A, Ergun O, Etafy M, Calixte N, Brahmbhatt J, et al. PD58-06 What is the predictive value of a spermatic cord block prior to microsurgical denervation of the spermatic cord? J Urol. 2020;203(Supplement 4):e1202.

    Google Scholar 

  35. Abramov I, Park MT, Gooldy TC, Xu Y, Lawton MT, Little AS, et al. Real-time intraoperative surgical telepathology using confocal laser endomicroscopy. Neurosurg Focus. 2022;52(6):E9.

    Article  PubMed  Google Scholar 

  36. Abramov I, Park MT, Belykh E, Dru AB, Xu Y, Gooldy TC, et al. Intraoperative confocal laser endomicroscopy: prospective in vivo feasibility study of a clinical-grade system for brain tumors. J Neurosurg. 2022;138:587–97.

    Article  PubMed  Google Scholar 

  37. Vaculová J, Kroupa R, Kala Z, Dolina J, Grolich T, Vlažný J, et al. The use of confocal laser endomicroscopy in diagnosing Barrett’s esophagus and esophageal adenocarcinoma. Diagnostics (Basel). 2022;12(7):1616.

    Article  PubMed  Google Scholar 

  38. Ustione A, Piston DW. A simple introduction to multiphoton microscopy. J Microsc. 2011;243(3):221–6.

    Article  PubMed  Google Scholar 

  39. Sun HH, Tay KS, Jesse E, Muncey W, Loeb A, Thirumavalavan N. Microsurgical denervation of the spermatic cord: a historical perspective and recent developments. Sex Med Rev. 2022;10:791.

    Article  PubMed  Google Scholar 

  40. Ramasamy R, Sterling J, Li PS, Robinson BD, Parekattil S, Chen J, et al. Multiphoton imaging and laser ablation of rodent spermatic cord nerves: potential treatment for patients with chronic orchialgia. J Urol. 2012;187(2):733–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sijo J. Parekattil .

Editor information

Editors and Affiliations

Ethics declarations

The authors report no financial disclosures or sponsors for this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ergun, O., Gudeloglu, A., Parekattil, S.J. (2023). Robotic Microsurgery. In: Manzano, J.P., Ferreira, L.M. (eds) Robotic Surgery Devices in Surgical Specialties. Springer, Cham. https://doi.org/10.1007/978-3-031-35102-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35102-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35101-3

  • Online ISBN: 978-3-031-35102-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics