Skip to main content

Abstract

Amyloid imaging represents a noninvasive molecular imaging procedure allowing in vivo assessment and quantification of amyloid plaque pathology in the brain. Amyloid plaque pathology is considered one major neuropathological hallmark of Alzheimer’s disease. Consequently, a negative amyloid scan is not consistent with the diagnosis of Alzheimer’s disease in patients with cognitive decline/dementia. However, other forms of neurodegenerative disorders cannot be excluded. On the other hand, a positive amyloid scan alone is not sufficient to establish the diagnosis of dementia of the Alzheimer type but only confirms the presence of amyloid pathology and needs to be integrated together with additional clinical/biomarker information for a conclusive diagnosis. In patients with objective cognitive decline such as “mild cognitive impairment,” a positive amyloid scan is associated with a greater risk of conversion to manifest dementia of the Alzheimer’s type. Amyloid imaging allows to identify cases with atypical Alzheimer’s disease and to exclude cases clinically appearing like Alzheimer’s disease while based on different non-Alzheimer neuropathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drzezga A. Amyloid-plaque imaging in early and differential diagnosis of dementia. Ann Nucl Med. 2010;24:55–66.

    Article  PubMed  Google Scholar 

  2. Villemagne VL, Klunk WE, Mathis CA, et al. Aβ Imaging: feasible, pertinent, and vital to progress in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:209–19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bonner MF, Ash S, Grossman M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr Neurol Neurosci Rep. 2010;10:484–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Davies RR, Hodges JR, Kril JJ, et al. The pathological basis of semantic dementia. Brain. 2005;128:1984–95.

    Article  PubMed  Google Scholar 

  5. Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson JK, Diehl J, Mendez MF, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62:925–30.

    Article  PubMed  Google Scholar 

  7. Braak E, Griffing K, Arai K, et al. Neuropathology of Alzheimer’s disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin Neurosci. 1999;249:S14–22.

    Article  Google Scholar 

  8. Davies L, Wolska B, Hilbich C, et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology. 1988;38:1688–93.

    Article  CAS  PubMed  Google Scholar 

  9. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Selkoe DJ. Folding proteins in fatal ways. Nature. 2003;426:900–4.

    Article  CAS  PubMed  Google Scholar 

  13. Rabinovici GD, Gatsonis C, Apgar C, et al. Association of amyloid positron emission tomography with subsequent change in clinical management among Medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 2019;321:1286–94.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ceccaldi M, Jonveaux T, Verger A, et al. Added value of 18F-florbetaben amyloid PET in the diagnostic workup of most complex patients with dementia in France: a naturalistic study. Alzheimers Dement. 2018;14:293–305.

    Article  PubMed  Google Scholar 

  15. Decourt B, Boumelhem F, Pope ED, et al. Critical appraisal of amyloid lowering agents in AD. Curr Neurol Neurosci Rep. 2021;21:1–10.

    Article  Google Scholar 

  16. Wolk DA. Amyloid imaging in atypical presentations of Alzheimer’s disease. Curr Neurol Neurosci Rep. 2013;13:412.

    Article  PubMed  Google Scholar 

  17. Crutch SJ, Lehmann M, Schott JM, et al. Posterior cortical atrophy. Lancet Neurol. 2012;11:170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nestor P, Caine D, Fryer T, et al. The topography of metabolic deficits in posterior cortical atrophy (the visual variant of Alzheimer’s disease) with FDG-PET. J Neurol Neurosurg Psychiatry. 2003;74:1521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Souza LC, Corlier F, Habert M-O, et al. Similar amyloid-β burden in posterior cortical atrophy and Alzheimer’s disease. Brain. 2011;134:2036–43.

    Article  PubMed  Google Scholar 

  20. Crutch SJ, Schott JM, Rabinovici GD, et al. Consensus classification of posterior cortical atrophy. Alzheimers Dement. 2017;13:870–84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Formaglio M, Costes N, Seguin J, et al. In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol. 2011;258:1841–51.

    Article  PubMed  Google Scholar 

  22. Grossman M. Primary progressive aphasia: clinicopathological correlations. Nat Rev Neurol. 2010;6:88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mesulam M-M, Weintraub S, Rogalski EJ, et al. Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia. Brain. 2014;137:1176–92.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mesulam M, Wieneke C, Rogalski E, et al. Quantitative template for subtyping primary progressive aphasia. Arch Neurol. 2009;66:1545–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Josephs KA, Duffy JR, Strand EA, et al. Progranulin-associated PiB-negative logopenic primary progressive aphasia. J Neurol. 2014;261:604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnson JK, Head E, Kim R, et al. Clinical and pathological evidence for a frontal variant of Alzheimer disease. Arch Neurol. 1999;56:1233–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ossenkoppele R, Pijnenburg YA, Perry DC, et al. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain. 2015;138:2732–49.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rabinovici G, Furst A, O'neil J, et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology. 2007;68:1205–12.

    Article  CAS  PubMed  Google Scholar 

  29. Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–50.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Day GS, Lim TS, Hassenstab J, et al. Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology. 2017;88:1273–81.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drzezga A, Grimmer T, Henriksen G, et al. Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. NeuroImage. 2008;39:619–33.

    Article  PubMed  Google Scholar 

  32. Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313:1924–38.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKeith I, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72.

    Article  CAS  PubMed  Google Scholar 

  34. Rowe CC, Ng S, Ackermann U, et al. Imaging β-amyloid burden in aging and dementia. Neurology. 2007;68:1718–25.

    Article  CAS  PubMed  Google Scholar 

  35. Edison P, Rowe CC, Rinne JO, et al. Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C] PIB positron emission tomography. J Neurol Neurosurg Psychiatry. 2008;79:1331–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pike KE, Savage G, Villemagne VL, et al. β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain. 2007;130:2837–44.

    Article  PubMed  Google Scholar 

  37. Mintun M, Larossa G, Sheline Y, et al. [11C] PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67:446–52.

    Article  CAS  PubMed  Google Scholar 

  38. Villemagne VL, Pike KE, Darby D, et al. Aβ deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer's disease. Neuropsychologia. 2008;46:1688–97.

    Article  CAS  PubMed  Google Scholar 

  39. Drzezga A, Becker JA, Van Dijk KR, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134:1635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hedden T, Van Dijk KR, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29:12686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sperling RA, LaViolette PS, O’Keefe K, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63:178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frisoni GB, Barkhof F, Altomare D, et al. AMYPAD diagnostic and patient management study: rationale and design. Alzheimers Dement. 2019;15:388–99.

    Article  PubMed  Google Scholar 

  43. Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29:1456–65.

    Article  CAS  PubMed  Google Scholar 

  44. Mormino E, Kluth J, Madison C, et al. Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain. 2009;132:1310–23.

    Article  CAS  PubMed  Google Scholar 

  45. Koivunen J, Scheinin N, Virta J, et al. Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology. 2011;76:1085–90.

    Article  CAS  PubMed  Google Scholar 

  46. Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73:754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69:181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang S, Han D, Tan X, et al. Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. Int J Clin Pract. 2012;66:185–98.

    Article  CAS  PubMed  Google Scholar 

  49. Engler H, Forsberg A, Almkvist O, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain. 2006;129:2856–66.

    Article  PubMed  Google Scholar 

  50. Grimmer T, Tholen S, Yousefi BH, et al. Progression of cerebral amyloid load is associated with the apolipoprotein E ε4 genotype in Alzheimer’s disease. Biol Psychiatry. 2010;68:879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol Commun. 2014;2:135.

    PubMed  PubMed Central  Google Scholar 

  52. Rinne JO, Brooks DJ, Rossor MN, et al. 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 2010;9:363–72.

    Article  CAS  PubMed  Google Scholar 

  53. Ratner M. Biogen’s early Alzheimer’s data raise hopes, some eyebrows. Nat Biotechnol. 2015;33:438–9.

    Article  CAS  PubMed  Google Scholar 

  54. O’Gorman J, Chiao P, Bussière T, et al. Clinical development of aducanumab, an anti-Aβ human monoclonal antibody being investigated for the treatment of early Alzheimer’s disease. J Prev Alzheimers Dis. 2017;4:255–63.

    PubMed  Google Scholar 

  55. Chételat G, Arbizu J, Barthel H, et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19:951–62.

    Article  PubMed  Google Scholar 

  56. Leuzy A, Mattsson-Carlgren N, Palmqvist S, et al. Blood-based biomarkers for Alzheimer’s disease. EMBO Mol Med. 2022;14:e14408.

    Article  CAS  PubMed  Google Scholar 

  57. Rózga M, Bittner T, Batrla R, et al. Preanalytical sample handling recommendations for Alzheimer’s disease plasma biomarkers. Alzheimers Dement (Amst). 2019;11:291–300.

    Article  PubMed  Google Scholar 

  58. Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med. 2013;54:476–90.

    Article  CAS  PubMed  Google Scholar 

  59. Ikonomovic MD, Klunk WE, Abrahamson EE, et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–45.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging β-amyloid pathology. JAMA. 2011;305:275–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barthel H, Gertz H-J, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10:424–35.

    Article  CAS  PubMed  Google Scholar 

  62. Fleisher AS, Chen K, Liu X, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011;68:1404–11.

    Article  PubMed  Google Scholar 

  63. Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.

    Article  PubMed  Google Scholar 

  64. Klunk WE, Koeppe RA, Price JC, et al. The Centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11(1–15):e14.

    Google Scholar 

  65. Bischof GN, Bartenstein P, Barthel H, et al. Toward a universal readout for 18F-labeled amyloid tracers: the CAPTAINs study. J Nucl Med. 2021;62:999–1005.

    Article  CAS  PubMed  Google Scholar 

  66. van Berckel BN, Ossenkoppele R, Tolboom N, et al. Longitudinal amyloid imaging using 11C-PiB: methodologic considerations. J Nucl Med. 2013;54:1570–6.

    Article  PubMed  Google Scholar 

  67. Tiepolt S, Hesse S, Patt M, et al. Early [18F] florbetaben and [11C] PiB PET images are a surrogate biomarker of neuronal injury in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43:1700–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Content of this article in part derived from previous publications/book chapters including “PET and SPECT Imaging of Neurodegenerative Diseases” in “Molecular Imaging, Principles and Practice, 2nd edition” Editors: Brian Ross, Sanjiv Gambhir as well as “Update Amyloid-Bildgebung in der Diagnostik der Neurodegeneration” in Angewandte Nuklearmedizin 2022, © Georg Thieme Verlag KG Stuttgart, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Drzezga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Drzezga, A., Giehl, K. (2023). Amyloid PET Imaging. In: Cross, D.J., Mosci, K., Minoshima, S. (eds) Molecular Imaging of Neurodegenerative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-031-35098-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35098-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35097-9

  • Online ISBN: 978-3-031-35098-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics