Skip to main content

Gut Microbiome and Brown Adipose Tissue

  • Reference work entry
  • First Online:
Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk

Part of the book series: Endocrinology ((ENDOCR))

  • 200 Accesses

Abstract

The high prevalence of worldwide obesity and its associated metabolic disorders has a very negative impact on health, resulting in increased prevalence of cardiovascular disease, type 2 diabetes, liver steatosis, arteriosclerosis, and some types of cancer. For this reason, the search for new therapeutic solutions to reduce obesity is strongly required. A possible therapeutic approach might be to increase energy expenditure through the enhancement of thermogenic pathways in white (WAT) and brown adipose tissue (BAT). Studies based on mice experiments performed in the first decade of the twenty-first century indicated that gut microbiota can play a relevant role in the modulation of host metabolic homeostasis and energy balance. However, the impact of gut microbiota on energy expenditure through the induction of BAT activity or browning of WAT is still unclear. While some studies point to a possible role of gut microbiota as endogenous modulator of BAT activity or WAT browning, other studies dissociate the impact of the microbiota from this process. Here, we will further review most of these studies in an attempt to understand the reasons for these discrepancies and also go over the few studies in humans exploring the relationship between gut microbiota and WAT browning or BAT activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed BA, Ong FJ, Barra NG, Blondin DP, Gunn E, Oreskovich SM, et al. Lower brown adipose tissue activity is associated with non-alcoholic fatty liver disease but not changes in the gut microbiota. Cell Rep Med. 2021;2:100397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allegretti JR, Kassam Z, Mullish BH, Chiang A, Carrellas M, Hurtado J, et al. Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol. 2020;18:855–863.e2.

    Article  CAS  PubMed  Google Scholar 

  • Anhê FF, Nachbar RT, Varin TV, Trottier J, Dudonné S, Le Barz M, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2019;68:453–64.

    Article  PubMed  Google Scholar 

  • Bäckhed F, Ding H, Wang T, Hooper LV, Gou YK, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S, Guérin B, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun. 2017;8:14146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–73.

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Wang D, Gu Y, Jiang Z, Zhou Z. Tangeretin prevents obesity by modulating systemic inflammation, fat browning, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. J Nutr Biochem. 2022;101:108943.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier C, Stojanović O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.

    Article  CAS  PubMed  Google Scholar 

  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23:804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes. 2020;11:1231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbiano S, Suárez-Zamorano N, Chevalier C, Lazarević V, Kieser S, Rigo D, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 2018;28:907–921.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9:203.

    Article  CAS  PubMed  Google Scholar 

  • García-Carrizo F, Cannon B, Nedergaard J, Picó C, Dols A, Rodríguez AM, et al. Regulation of thermogenic capacity in brown and white adipocytes by the prebiotic high-esterified pectin and its postbiotic acetate. Int J Obes. 2020;44:715–26.

    Article  Google Scholar 

  • Gavaldà-Navarro A, Moreno-Navarrete JM, Quesada-López T, Cairó M, Giralt M, Fernández-Real JM, et al. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans. Diabetologia. 2016;59:2208–18.

    Article  PubMed  Google Scholar 

  • Hild B, Dreier MS, Oh JH, McCulloch JA, Badger JH, Guo J, et al. Neonatal exposure to a wild-derived microbiome protects mice against diet-induced obesity. Nat Metab. 2021;3:1042–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houron C, Ciocan D, Trainel N, Mercier-Nomé F, Hugot C, Spatz M, et al. Gut microbiota reshaped by pectin treatment improves liver steatosis in obese mice. Nutrients. 2021;13(11):3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Kyrou I, Tan BK, Dimitriadis GK, Ramanjaneya M, Tripathi G, et al. Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology. 2016;157:1881.

    Article  CAS  PubMed  Google Scholar 

  • Hui S, Liu Y, Huang L, Zheng L, Zhou M, Lang H, et al. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Int J Obes. 2020;44:1678–90.

    Article  CAS  Google Scholar 

  • Hwang I, Park YJ, Kim YR, Kim YN, Ka S, Lee HY, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity. FASEB J. 2015;29:2397–411.

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Kang X, Yang H, Liu H, Yang X, Liu Q, et al. Lactobacillus acidophilus ameliorates obesity in mice through modulation of gut microbiota dysbiosis and intestinal permeability. Pharmacol Res. 2022;175:106020.

    Article  CAS  PubMed  Google Scholar 

  • Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  Google Scholar 

  • Kong LC, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot JL, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98:16–24.

    Article  CAS  PubMed  Google Scholar 

  • Kou G, Li P, Hu Y, Chen H, Nyantakyiwaa Amoah A, Seydou Traore S, et al. Nobiletin activates thermogenesis of brown and white adipose tissue in high-fat diet-fed C57BL/6 mice by shaping the gut microbiota. FASEB J. 2021;35:e21267.

    Article  CAS  PubMed  Google Scholar 

  • Krisko TI, Nicholls HT, Bare CJ, Holman CD, Putzel GG, Jansen RS, et al. Dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice. Cell Metab. 2020;31:592–604.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latorre J, Ortega F, Oliveras-Cañellas N, Comas F, Lluch A, Gavaldà-Navarro A, et al. Specific adipose tissue Lbp gene knockdown prevents diet-induced body weight gain, impacting fat accretion-related gene and protein expression. Mol Ther Nucleic Acids. 2022;27:870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc ES, Patnode CD, Webber EM, Redmond N, Rushkin M, O’Connor EA. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults updated evidence report and systematic review for the US Preventive Services Task Force. JAMA J Am Med Assoc. 2018;320:1172–91.

    Article  Google Scholar 

  • Li G, Xie C, Lu S, Nichols RG, Tian Y, Li L, et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017;26:801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Li L, Li M, Lam SM, Wang G, Wu Y, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep. 2019;26:2720–2737.e5.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li L, Li B, Hambly C, Wang G, Wu Y, et al. Brown adipose tissue is the key depot for glucose clearance in microbiota depleted mice. Nat Commun. 2021;12:4725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wang S, Li Y, Zhao M, Kuang J, Liang D, et al. Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat Commun. Springer US. 2022;13(1):2060.

    Article  CAS  Google Scholar 

  • Liou AP, Paziuk M, Luevano JM, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh RKC, Kingwell BA, Carey AL. Human brown adipose tissue as a target for obesity management; beyond cold-induced thermogenesis. Obes Rev. 2017;18:1227–42.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Escoté X, Ortega F, Serino M, Campbell M, Michalski MC, et al. A role for adipocyte-derived lipopolysaccharide-binding protein in inflammation- and obesity-associated adipose tissue dysfunction. Diabetologia. 2013;56:2524–37.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Jové M, Padró T, Boada J, Ortega F, Ricart W, et al. Adipocyte lipopolysaccharide binding protein (LBP) is linked to a specific lipidomic signature. Obesity. 2017;25:391–400.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Navarrete JM, Serino M, Blasco-Baque V, Azalbert V, Barton RH, Cardellini M, et al. Gut microbiota interacts with markers of adipose tissue browning, insulin action and plasma acetate in morbid obesity. Mol Nutr Food Res. 2018;62:3.

    Google Scholar 

  • Münzker J, Haase N, Till A, Sucher R, Haange SB, Nemetschke L, et al. Functional changes of the gastric bypass microbiota reactivate thermogenic adipose tissue and systemic glucose control via intestinal FXR-TGR5 crosstalk in diet-induced obesity. Microbiome [Internet]. BioMed Central. 2022;10(1):1–20. https://doi.org/10.1186/s40168-022-01264-5.

    Article  CAS  Google Scholar 

  • Nagata N, Xu L, Kohno S, Ushida Y, Aoki Y, Umeda R, et al. Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes. 2017;66:1222–36.

    Article  CAS  PubMed  Google Scholar 

  • Okla M, Wang W, Kang I, Pashaj A, Carr T, Chung S. Activation of Toll-like receptor 4 (TLR4) attenuates adaptive thermogenesis via endoplasmic reticulum stress. J Biol Chem. 2015;290:26476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14:272.

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Alvarez L, Acosta FM, Xu H, Sanchez-Delgado G, Vilchez-Vargas R, Link A, et al. Fecal microbiota composition is related to brown adipose tissue 18F-fluorodeoxyglucose uptake in young adults. J Endocrinol Investig. 2023;46:567-576.

    Google Scholar 

  • Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545.

    Article  PubMed  PubMed Central  Google Scholar 

  • Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107.

    Article  CAS  PubMed  Google Scholar 

  • Quan LH, Zhang C, Dong M, Dong M, Jiang J, Xu H, et al. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation. Gut. 2020;69:1239.

    Article  CAS  PubMed  Google Scholar 

  • Rastelli M, Cani PD, Knauf C. The gut microbiome influences host endocrine functions. Endocr Rev. 2019;40:1271.

    Article  PubMed  Google Scholar 

  • Richard G, Blondin DP, Syed SA, Rossi L, Fontes ME, Fortin M, et al. High-fructose feeding suppresses cold-stimulated brown adipose tissue glucose uptake independently of changes in thermogenesis and the gut microbiome. Cell Reports Med. 2022;3(9):100742.

    Article  CAS  Google Scholar 

  • Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell. 2017;171:1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31.

    Article  CAS  PubMed  Google Scholar 

  • Somm E, Henry H, Bruce SJ, Aeby S, Rosikiewicz M, Sykiotis GP, et al. β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight. 2017;2:e91809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suárez-Zamorano N, Fabbiano S, Chevalier C, Stojanović O, Colin DJ, Stevanović A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242.

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518.

    Article  CAS  PubMed  Google Scholar 

  • Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24:41.

    Article  PubMed  Google Scholar 

  • Wang B, Kong Q, Cui S, Li X, Gu Z, Zhao J, et al. Bifidobacterium adolescentis isolated from different hosts modifies the intestinal microbiota and displays differential metabolic and immunomodulatory properties in mice fed a high-fat diet. Nutrients. 2021;13(3):1017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Worthmann A, John C, Rühlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med. 2017;23:839.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang Z, et al. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity. Theranostics. 2020;10:11302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim JH, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol. 2021;6:563.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Yamashita T, Osone T, Hosooka T, Shinohara M, Kitahama S, et al. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience. 2021;24:103342.

    Google Scholar 

  • Yu EW, Gao L, Stastka P, Cheney MC, Mahabamunuge J, Soto MT, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 2020;17:e1003051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9:2872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, He X, Sheng Y, Yang C, Xu J, Zheng S, et al. Allicin-induced host-gut microbe interactions improves energy homeostasis. FASEB J. 2020;34:10682.

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Fang R, Xingru L, Zhang Y, Yang M, Yue S, Jiang Y, Man C. Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food Funct. 2022a;13(12):6688–701. https://pubmed.ncbi.nlm.nih.gov/35647914/

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Jin L, Wang Y, Tu J, Zheng R, Ding L, et al. Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nat Commun. 2022b;13:1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziȩtak M, Kovatcheva-Datchary P, Markiewicz LH, Ståhlman M, Kozak LP, Bäckhed F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016;23:1216.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Moreno-Navarrete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moreno-Navarrete, J.M. (2024). Gut Microbiome and Brown Adipose Tissue. In: Federici, M., Menghini, R. (eds) Gut Microbiome, Microbial Metabolites and Cardiometabolic Risk. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-35064-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35064-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35063-4

  • Online ISBN: 978-3-031-35064-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics