Skip to main content

Health 4.0, Prevention, and Health Promotion in Companies: A Systematic Literature Review

  • Conference paper
  • First Online:
Computer Science and Engineering in Health Services (COMPSE 2022)

Abstract

Noncommunicable diseases are growing worldwide and their impact within organizations affects the productivity of companies. The accelerated pace of life, sedentary lifestyle, eating habits, and lack of self-regulation have deteriorated workers’ health conditions. The Health 4.0 paradigm can help in health prevention and promotion thanks to the use of smart devices and digital tools adaptable to users and companies. Trials from 11 bibliographic databases were consulted and out of a total of 742 articles, 86 were selected that met the selection criteria. There is scientific evidence that supports the use of smart devices in companies focusing on weight control, physical activity, sleep control, and glycemic index to impact the treatment and prevention of noncommunicable diseases such as diabetes, overweight, work stress, cardiovascular diseases, and in lifestyle. Using wearables or smartphones, incentive programs or assistance with specialists have been considered by some researchers; elements such as privacy and information security are essential in the implementation, as well as methods that can maintain the use of these prevention and health promotion programs. More research is necessary regarding the use of smart devices such as the permanence of health initiatives in companies, cost-effectiveness, and real-time analysis, and focus on various pathological conditions for success in prevention and health promotion strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., Ye, Z.: Wearable health devices in health care: Narrative systematic review. JMIR Mhealth Uhealth. 8(11) (2020). https://doi.org/10.2196/18907

  2. WHO, World Health Organization.: mHealth: New horizons for health through mobile technologies: Second global survey on eHealth (2011). https://apps.who.int/iris/handle/10665/44607. Last accessed 2022/09/18

  3. Al-Qurishi, M., Al-Rakhami, M., Al-Qershi, F., Hassan, M.M., Alamri, A., Khan, H.U., Xiang, Y.: A framework for cloud-based healthcare services to monitor noncommunicable diseases patient. Int. J. Distrib. Sensor Netw. 11(3), 985629 (2015). https://doi.org/10.1155/2015/985629

    Article  Google Scholar 

  4. Baig, M.M., GholamHosseini, H., Moqeem, A.A., Mirza, F., Lindén, M.: A systematic review of wearable patient monitoring systems–current challenges and opportunities for clinical adoption. J. Med. Syst. 41(7), 1–9 (2017). https://doi.org/10.1007/s10916-017-0760-1

    Article  Google Scholar 

  5. Zhang, H., Jiang, Y., Nguyen, H.D., Poo, D.C.C., Wang, W.: The effect of a smartphone-based coronary heart disease prevention (SBCHDP) programme on awareness and knowledge of CHD, stress, and cardiac-related lifestyle behaviours among the working population in Singapore: A pilot randomised controlled trial. Health Qual. Life Outcomes. 15(1), 1–13 (2017). https://doi.org/10.1186/s12955-017-0623-y

    Article  Google Scholar 

  6. Lee, J.S., Kang, M.A., Lee, S.K.: Effects of the e-Motivate4Change program on metabolic syndrome in young adults using health apps and wearable devices: Quasi-experimental study. J. Med. Internet Res. 22(7), e17031 (2020). https://doi.org/10.2196/17031

    Article  MathSciNet  Google Scholar 

  7. Finkelstein, E.A., Sahasranaman, A., John, G., Haaland, B.A., Bilger, M., Sloan, R.A., Khaing, E.E., Evenson, K.R.: Design and baseline characteristics of participants in the TRial of Economic Incentives to Promote PA (TRIPPA): A randomized controlled trial of a six-month pedometer program with financial incentives. Contemp. Clin. Trials. 41, 238–247 (2015). https://doi.org/10.1016/j.cct.2015.01.020

    Article  Google Scholar 

  8. Zhang, Y., Cui, J., Ma, K., Chen, H., Zhang, J.: A wristband device for detecting human pulse and motion based on the Internet of Things. Measurement. 163, 108036 (2020). https://doi.org/10.1016/j.measurement.2020.108036

    Article  Google Scholar 

  9. WHO, World Health Organization.: Diabetes (2021). https://www.who.int/news-room/fact-sheets/detail/diabetes. Last accessed 2022/09/18

  10. IDF: Diabetes Atlas, 8th edn. International Diabetes Federation, Executive Office, Brussels (2017) https://diabetesatlas.org/upload/resources/previous/files/8/IDF_DA_8e-EN-final.pdf, Last accessed 2022/09/18

    Google Scholar 

  11. Alwashmi, M., Mugford, G., Abu-Ashour, W., Nuccio, M.: A digital diabetes prevention program (transform) for adults with prediabetes: Secondary analysis. JMIR Diab. 4(3) (2019). https://doi.org/10.2196/13904

  12. Garvey, W., Arathuzik, G.: Lifestyle therapy for diabetes mellitus. In: Mechanick, J., Kushner, R. (eds.) Lifestyle Medicine. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24687-1_22

    Chapter  Google Scholar 

  13. Wong, S.S., Yu, M., Loprinzi, P.D., Hongu, N.: Smart applications to track and record physical activity: Implications for obesity treatment. Smart Homecare Technol. TeleHealth. 2, 77 (2014) https://doi.org/10.2147/SHTT.S41484

    Article  Google Scholar 

  14. Mancia, G., Fagard, R., Narkiewicz, K., Redán, J., Zanchetti, A., Böhm, M., et al.: 2013 practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 31(10), 1925–1938 (2013). https://doi.org/10.3109/08037051.2013.817814

    Article  Google Scholar 

  15. Parati, G., Torlasco, C., Omboni, S., Pellegrini, D.: Smartphone applications for hypertension management: A potential game-changer that needs more control. Curr. Hypertens. Rep. 19(6), 1–9 (2017). https://doi.org/10.1007/s11906-017-0743-0

    Article  Google Scholar 

  16. Sunny, J.S., Patro, C.P.K., Karnani, K., Pingle, S.C., Lin, F., Anekoji, M., et al.: Anomaly detection framework for wearables data: A perspective review on data concepts, data analysis algorithms and prospects. Sensors. 22(3), 756 (2022). https://doi.org/10.3390/s22030756

    Article  Google Scholar 

  17. de la Torre Díez, I., Garcia-Zapirain, B., Méndez-Zorrilla, A., López-Coronado, M.: Monitoring and follow-up of chronic heart failure: A literature review of eHealth applications and systems. J. Med. Syst. 40(7), 1–9 (2016). https://doi.org/10.1007/s10916-016-0537-y

    Article  Google Scholar 

  18. Chen, Y.H., Sawan, M.: Trends and challenges of wearable multimodal technologies for stroke risk prediction. Sensors. 21(2), 460 (2021). https://doi.org/10.3390/s21020460

    Article  Google Scholar 

  19. Benjamin, E.J., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., et al.: Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation. 139(10), e56–e528 (2019). https://doi.org/10.1161/CIR.0000000000000659

    Article  Google Scholar 

  20. Machorro-Cano, I., Alor-Hernández, G., Paredes-Valverde, M.A., Ramos-Deonati, U., Sánchez-Cervantes, J.L., Rodríguez-Mazahua, L.: PISIoT: A machine learning and IoT-based smart health platform for overweight and obesity control. Appl. Sci. 9(15) (2019) http://dx.doi.org/3037.10.3390/app9153037

  21. Gal, R., May, A.M., van Overmeeren, E.J., Simons, M., Monninkhof, E.M.: The effect of PA interventions comprising wearables and smartphone applications on PA: A systematic review and meta-analysis. Sports Med. Open. 4(1), 1–15 (2018). https://doi.org/10.1186/s40798-018-0157-9

    Article  Google Scholar 

  22. Obaidat, M., Rana, S., Maitra, M., Giri, D., Dutta, S.: Chapter 19: Biometric security and Internet of Things (IoT). In: Biometric-Based Physical and Cybersecurity Systems, pp. 477–509 (2018). https://doi.org/10.1007/978-3-319-98734-7_19

    Chapter  Google Scholar 

  23. Sonnier, P.: The Fourth Wave: Digital Health. Independently Published (2017)

    Google Scholar 

  24. Rodriguez, V.H.: Aplicación de sensores vestibles y teléfonos inteligentes en el bienestar personal: Cuantificación de la actividad física y control de la práctica de mindfulness. Tesis Doctoral. Universidad de Zaragoza (2021)

    Google Scholar 

  25. Zhu, H., Wu, C.K., Koo, C.H., Tsang, Y.T., Liu, Y., Chi, H.R., Tsang, K.F.: Smart healthcare in the era of internet-of-things. IEEE Consum. Electron. Mag. 8(5), 26–30 (2019). https://doi.org/10.1109/MCE.2019.2923929

    Article  Google Scholar 

  26. García Lupi Vergara, L., García Pereira, A., Holdorf Lopez, M.: Estado da arte em wearables para saúde (2014). https://repositorio.uca.edu.ar/handle/123456789/7964

  27. WHO, World Health Organization.: mHealth. Use of appropriate digital technologies for public health: report by Director-General. 71st World Health Assembly provisional agenda item, 12, A71 (2018). Last accessed 2022/09/18. https://apps.who.int/gb/ebwha/pdf_files/WHA71/A71_20-en.pdf

  28. Amft, O., Lukowicz, P.: From backpacks to smartphones: Past, present, and future of wearable computers. IEEE Pervas. Comput. 8(3), 8–13 (2009). https://doi.org/10.1109/MPRV.2009.44

    Article  Google Scholar 

  29. Balbim, G.M., Marques, I.G., Marquez, D.X., Patel, D., Sharp, L.K., Kitsiou, S., Nyenhuis, S.M.: Using Fitbit as an mHealth intervention tool to promote PA: Potential challenges and solutions. JMIR Mhealth Uhealth. 9(3) (2021). https://doi.org/10.2196/25289

  30. Muralidharan, S., Ranjani, H., Anjana, R.M., Allender, S., Mohan, V.: Mobile health technology in the prevention and management of type 2 diabetes. Indian J. Endocrinol. Metab. 21(2), 334 (2017)

    Article  Google Scholar 

  31. Guk, K., Han, G., Lim, J., Jeong, K., Kang, T., Lim, E.K., Jung, J.: Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials. 9(6), 813 (2019). https://doi.org/10.3390/nano9060813

    Article  Google Scholar 

  32. Shah, M.: Big Data and the Internet of Things. Big Data Analysis: New Algorithms for a New Society, pp. 207–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26989-4_9

    Book  Google Scholar 

  33. Franssen, W., Franssen, G.H., Spaas, J., Solmi, F., Eijnde, B.O.: Can consumer wearable activity tracker-based interventions improve PA and cardiometabolic health in patients with chronic diseases? A systematic review and meta-analysis of randomized controlled trials. Int. J. Behav. Nutr. PA. 17(1), 1–20 (2020). https://doi.org/10.1186/s12966-020-00955-2

    Article  Google Scholar 

  34. Villarreal, V., Berbey-Alvarez, A.: Evaluation of mHealth applications related to cardiovascular diseases: A systematic review. Acta Informática Medica. 28(2), 130 (2020) https://dx.doi.org/10.5455%2Faim.2020.28.130-137

    Article  Google Scholar 

  35. Bayoumy, K., Gaber, M., Elshafeey, A., Mhaimeed, O., Dineen, E.H., Marvel, F.A., Martin, S.S., Muse, E.D., Turakhia, M.P., Tarakji, K.G., Elshazly, M.B.: Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 18(8), 581–599 (2021). https://doi.org/10.1038/s41569-021-00522-7

    Article  Google Scholar 

  36. Iqbal, S., Mahgoub, I., Du, E., Leavitt, M.A., Asghar, W.: Advances in healthcare wearable devices. npj Flex. Electron. 5(1), 1–14 (2021). https://doi.org/10.1038/s41528-021-00107-x

    Article  Google Scholar 

  37. Binyamin, S.S., Hoque, M.: Understanding the drivers of wearable health monitoring technology: An extension of the unified theory of acceptance and use of technology. Sustainability. 12(22), 9605 (2020). https://doi.org/10.3390/su12229605

    Article  Google Scholar 

  38. Lucivero, F., Jongsma, K.R.: A mobile revolution for healthcare? Setting the agenda for bioethics. J. Med. Ethics. 44(10), 685–689 (2018) https://doi.org/10.1136/medethics-2017-104741

    Article  Google Scholar 

  39. Müller, A.M., Alley, S., Schoeppe, S., Vandelanotte, C.: The effectiveness of e-& mHealth interventions to promote PA and healthy diets in developing countries: A systematic review. Int. J. Behav. Nutr. PA. 13(1), 1–14 (2016). https://doi.org/10.1186/s12966-016-0434-2

    Article  Google Scholar 

  40. Kristoffersson, A., Lindén, M.: A systematic review of wearable sensors for monitoring PA. Sensors. 22(2), 573 (2022). https://doi.org/10.3390/s22020573

    Article  Google Scholar 

  41. Yang, C.C., Hsu, Y.L.: A review of accelerometry-based wearable motion detectors for PA monitoring. Sensors. 10(8), 7772–7788 (2010). https://doi.org/10.3390/s100807772

    Article  Google Scholar 

  42. Cobos Gil, M.Á.: Standard and precordial leads obtained with an Apple Watch. Ann. Intern. Med. 173(3), 249–250 (2020). https://doi.org/10.7326/L20-0588

    Article  Google Scholar 

  43. Kamišalić, A., Fister, I., Turkanović, M., Karakatič, S.: Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors. 18(6), 1714 (2018). https://doi.org/10.3390/s18061714

    Article  Google Scholar 

  44. Dagher, L., Shi, H., Zhao, Y., Marrouche, N.F.: Wearables in cardiology: Here to stay. Heart Rhythm. 17(5), 889–895 (2020). https://doi.org/10.1016/j.hrthm.2020.02.023

    Article  Google Scholar 

  45. Chan, M., Estève, D., Fourniols, J.Y., Escriba, C., Campo, E.: Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56(3), 137–156 (2012). https://doi.org/10.1016/j.artmed.2012.09.003

    Article  Google Scholar 

  46. Wang, J.: Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–825 (2008). https://doi.org/10.1021/cr068123a

    Article  Google Scholar 

  47. Xie, J., Wen, D., Liang, L., Jia, Y., Gao, L., Lei, J.: Evaluating the validity of current mainstream wearable devices in fitness tracking under various physical activities: Comparative study. JMIR Mhealth Uhealth. 6(4), e9754 (2018). https://doi.org/10.2196/mhealth.9754

    Article  Google Scholar 

  48. Luo, J., Zhang, K., Xu, Y., Tao, Y., Zhang, Q.: Effectiveness of wearable device-based intervention on glycemic control in patients with type 2 diabetes: A system review and meta-analysis. J. Med. Syst. 46(1), 1–15 (2022). https://doi.org/10.1007/s10916-021-01797-6

    Article  Google Scholar 

  49. Mardonova, M., Choi, Y.: Review of wearable device technology and its applications to the mining industry. Energies. 11(3), 547 (2018). https://doi.org/10.3390/en11030547

    Article  Google Scholar 

  50. Villarreal, V., Hervás, R., Bravo, J.: A systematic review for mobile monitoring solutions in m-health. J. Med. Syst. 40(9), 1–12 (2016). https://doi.org/10.1007/s10916-016-0559-5

    Article  Google Scholar 

  51. Meguro, K., Svensson, T., Chung, U.I., Svensson, A.K.: Associations of work-related stress and total sleep time with cholesterol levels in an occupational cohort of Japanese office workers. J. Occup. Health. 63(1), e12275 (2021). https://doi.org/10.1002/1348-9585.12275

    Article  Google Scholar 

  52. Lee, M., Shin, J.: Change in waist circumference with continuous use of a smart belt: An observational study. JMIR Mhealth Uhealth. 7(5), e10737 (2019). https://doi.org/10.2196/10737

    Article  MathSciNet  Google Scholar 

  53. Zhang, G.: A wearable device for health management detection of multiple physiological parameters based on ZigBee wireless networks. Measurement. 165, 108168 (2020). https://doi.org/10.1016/j.measurement.2020.108168

    Article  Google Scholar 

  54. Cappon, G., Acciaroli, G., Vettoretti, M., Facchinetti, A., Sparacino, G.: Wearable continuous glucose monitoring sensors: A revolution in diabetes treatment. Electronics. 6(3), 65 (2017). https://doi.org/10.3390/electronics6030065

    Article  Google Scholar 

  55. Liang, X., Wang, Q., Yang, X., Cao, J., Chen, J., Mo, X., Huang, J., Wang, L., Gu, D.: Effect of mobile phone intervention for diabetes on glycemic control: A meta-analysis. Diabet. Med. 28(4), 455–463 (2011). https://doi.org/10.1111/j.1464-5491.2010.03180.x

    Article  Google Scholar 

  56. Bonoto, B.C., de Araújo, V.E., Godói, I.P., de Lemos, L.L.P., Godman, B., Bennie, M., Diniz, L.M., Junior, A.A.G.: Efficacy of mobile apps to support the care of patients with diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. JMIR Mhealth Uhealth. 5(3), e6309 (2017). https://doi.org/10.2196/mhealth.6309

    Article  Google Scholar 

  57. Shan, R., Sarkar, S., Martin, S.S.: Digital health technology and mobile devices for the management of diabetes mellitus: State of the art. Diabetologia. 62(6), 877–887 (2019). https://doi.org/10.1007/s00125-019-4864-7

    Article  Google Scholar 

  58. Muthu, B., Sivaparthipan, C.B., Manogaran, G., Sundarasekar, R., Kadry, S., Shanthini, A., Dasel, A.: IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector. Peer-to-Peer Netw. Appl. 13(6), 2123–2134 (2020). https://doi.org/10.1007/s12083-019-00823-2

    Article  Google Scholar 

  59. Yen, H.Y.: Smart wearable devices as a psychological intervention for healthy lifestyle and quality of life: A randomized controlled trial. Qual. Life Res. 30(3), 791–802 (2021). https://doi.org/10.1007/s11136-020-02680-6

    Article  Google Scholar 

  60. McDonough, D.J., Su, X., Gao, Z.: Health wearable devices for weight and BMI reduction in individuals with overweight/obesity and chronic comorbidities: Systematic review and network meta-analysis. Br. J. Sports Med. 55(16), 917–925 (2021) https://doi.org/10.1136/bjsports-2020-103594

    Article  Google Scholar 

  61. Makroum, M.A., Adda, M., Bouzouane, A., Ibrahim, H.: Machine learning and smart devices for diabetes management: Systematic review. Sensors. 22(5), 1843 (2022). https://doi.org/10.3390/s22051843

    Article  Google Scholar 

  62. Buckingham, S.A., Williams, A.J., Morrissey, K., Price, L., Harrison, J.: Mobile health interventions to promote PA and reduce sedentary behavior in the workplace: A systematic review. Dig. Health. 5 (2019). https://doi.org/10.1177/2055207619839883

  63. Silveira, F.D., Rodeghiero Neto, I., Santos, B.M.D., Gasparetto, R.M.D.O., Machado, F.M., Rodrigues, P.C.C., Amaral, F.G.: Industry 4.0 perspectives in the health sector in Brazil. Ind. J. Manag. Prod. 1(12), 1–14 (2021). https://doi.org/10.14807/ijmp.v12i1.1289

    Article  Google Scholar 

  64. Greenfield, R., Busink, E., Wong, C.P., Riboli-Sasco, E., Greenfield, G., Majeed, A., Car, J., Wark, P.A.: Truck drivers’ perceptions on wearable devices and health promotion: A qualitative study. BMC Public Health. 16(1), 1–10 (2016). https://doi.org/10.1186/s12889-016-3323-3

    Article  Google Scholar 

  65. Torbjørnsen, A., Ribu, L., Rønnevig, M., Grøttland, A., Helseth, S.: Users’ acceptability of a mobile application for persons with type 2 diabetes: A qualitative study. BMC Health Serv. Res. 19(1), 1–14 (2019). https://doi.org/10.1186/s12913-019-4486-2

    Article  Google Scholar 

  66. Muaremi, A., Arnrich, B., Tröster, G.: Towards measuring stress with smartphones and wearable devices during workday and sleep. BioNanoScience. 3(2), 172–183 (2013). https://doi.org/10.1007/s12668-013-0089-2

    Article  Google Scholar 

  67. Giddens, L., Leidner, D., Gonzalez, E.: The role of Fitbits in corporate wellness programs: Does step count matter? In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017). http://hdl.handle.net/10125/41596

    Google Scholar 

  68. Maltseva, K.: Wearables in the workplace: The brave new world of employee engagement. Bus. Horiz. 63(4), 493–505 (2020). https://doi.org/10.1016/j.bushor.2020.03.007

    Article  Google Scholar 

  69. Han, M., Cho, B., Kwon, H., Son, K., Lee, H., Lee, J., Park, J.: A mobile-based comprehensive weight reduction program for the workplace (Health-On): Development and pilot study. JMIR Mhealth Uhealth. 7(11), e11158 (2019). https://doi.org/10.2196/11158

    Article  Google Scholar 

  70. Salesforce Research.: Putting wearables to work: special report 2 (2015). https://a.sfdcstatic.com/content/dam/www/ocms/assets/pdf/misc/StateOfWearablesReport.pdf. Last accessed 2022/09/18

  71. Khakurel, J., Melkas, H., Porras, J.: Tapping into the wearable device revolution in the work environment: A systematic review. Inf. Technol. People. 31(3), 791–818 (2018). https://doi.org/10.1108/ITP-03-2017-0076

    Article  Google Scholar 

  72. Munayat, G.: Impact of health applications on the Indian health insurance companies. Thesis (2018). https://urn.fi/URN:NBN:fi:amk-201805168582

  73. Bent, B., Cho, P.J., Wittmann, A., Thacker, C., Muppidi, S., Snyder, M., Matthew, J.C., Feinglos, M., Dunn, J.P.: Non-invasive wearables for remote monitoring of HbA1c and glucose variability: Proof of concept. BMJ Open Diabetes Res. Care. 9(1) (2021) https://doi.org/10.1136/bmjdrc-2020-002027

  74. Stephenson, A., Garcia-Constantino, M., McDonough, S.M., Murphy, M.H., Nugent, C.D., Mair, J.L.: Iterative four-phase development of a theory-based digital behavior change intervention to reduce occupational sedentary behavior. Dig. Health. 6, 2055207620913410 (2020). https://doi.org/10.1177/2055207620913410

    Article  Google Scholar 

  75. Chang, R.C.S., Lu, H.P., Yang, P., Luarn, P.: Reciprocal reinforcement between wearable activity trackers and social network services in influencing PA behaviors. JMIR Mhealth Uhealth. 4(3) (2016). https://doi.org/10.2196/mhealth.5637

  76. Finkelstein, E.A., Haaland, B.A., Bilger, M., Sahasranaman, A., Sloan, R.A., Nang, E.E.K., Evenson, K.R.: Effectiveness of activity trackers with and without incentives to increase PA (TRIPPA): A randomized controlled trial. Lancet Diab. Endocrinol. 4(12), 983–995 (2016) https://doi.org/10.1016/S2213-8587(16)30284-4

    Article  Google Scholar 

  77. Pancardo, P., Acosta, F.D., Hernández-Nolasco, J.A., Wister, M.A., López-de-Ipiña, D.: Real-time personalized monitoring to estimate occupational heat stress in ambient assisted working. Sensors. 15(7), 16956–16980 (2015) https://doi.org/10.3390/s150716956

    Article  Google Scholar 

  78. Patterson, P.D., Smith, K.J., Hostler, D.: Cost-effectiveness of workplace wellness to prevent cardiovascular events among US firefighters. BMC Cardiovasc. Disord. 16(1), 1–7 (2016). https://doi.org/10.1186/s12872-016-0414-0

    Article  Google Scholar 

  79. Soliño-Fernandez, D., Ding, A., Bayro-Kaiser, E., Ding, E.L.: Willingness to adopt wearable devices with behavioral and economic incentives by health insurance wellness programs: Results of a US cross-sectional survey with multiple consumer health vignettes. BMC Public Health. 19(1), 1–8 (2019). https://doi.org/10.1186/s12889-019-7920-9

    Article  Google Scholar 

  80. Baldassarre, A., Mucci, N., Padovan, M., Pellitteri, A., Viscera, S., Lecca, L.I., Galea, R.P., Arcangeli, G.: The role of electrocardiography in occupational medicine, from Einthoven’s invention to the digital era of wearable devices. Int. J. Environ. Res. Public Health. 17(14), 4975 (2020). https://doi.org/10.3390/ijerph17144975

    Article  Google Scholar 

  81. Wang, J.B., Cadmus-Bertram, L.A., Natarajan, L., White, M.M., Madanat, H., Nichols, J.F., Ayala, G., Pierce, J.: Wearable sensor/device (Fitbit One) and SMS text-messaging prompts to increase PA in overweight and obese adults: A randomized controlled trial. Telemed. J. E Health. 21(10), 782–792 (2015). https://doi.org/10.1089/tmj.2014.0176

    Article  Google Scholar 

  82. Smuck, M., Odonkor, C.A., Wilt, J.K., Schmidt, N., Swiernik, M.A.: The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Dig. Med. 4(1), 1–8 (2021). https://doi.org/10.1038/s41746-021-00418-3

    Article  Google Scholar 

  83. Stefanicka-Wojtas, D., Kurpas, D.: eHealth and mHealth in chronic diseases—Identification of barriers, existing solutions, and promoters based on a survey of EU stakeholders involved in Regions4PerMed (H2020). J. Pers. Med. 12(3), 467 (2022). https://doi.org/10.3390/jpm12030467

    Article  Google Scholar 

  84. Ahmed, S.A., Moore, M.B.J.: Health information technology implementation challenges and responsive solutions for health systems. Int. J. Mod. Res. Eng. Technol. 2(6), 1–8 (2017)

    Google Scholar 

  85. Kauffman, M.E., Soares, M.N.: New technologies and data ownership: Wearables and the erosion of personality rights. Revista Direitos Sociais e Políticas Públicas (UNIFAFIBE). 6(1), 512–538 (2018) https://doi.org/10.25245/rdspp.v6i1.444

    Article  Google Scholar 

  86. Allman-Farinelli, M., Chen, J.: mHealth technologies in the management of obesity: A narrative review. Smart Homecare Technol. TeleHealth. 4, 53–59 (2017)

    Article  Google Scholar 

  87. McAuley, E., Blissmer, B.: Self-efficacy determinants and consequences of physical activity. Exerc. Sport Sci. Rev. 28(2), 85–88 (2000) https://www.researchgate.net/publication/12417418

    Google Scholar 

  88. Clim, A., Răzvan, D.Z.: Game theory in designing mHealth apps for monitoring hypertension. Manag. Market. 14(2), 220–231 (2019). https://doi.org/10.2478/mmcks-2019-0015

    Article  Google Scholar 

  89. Engbers, L., Sattelmair, J.: Monitoring and Evaluation of Worksite Health Promotion Programs: Current State of Knowledge and Implications for Practice. World Health Organization (WHO) (2008)

    Google Scholar 

  90. Phillips, S.M., Cadmus-Bertram, L., Rosenberg, D., Buman, M.P., Lynch, B.M.: Wearable technology and PA in chronic disease: Opportunities and challenges. Am. J. Prev. Med. 54(1), 144–150 (2018). https://doi.org/10.1016/j.amepre.2017.08.015

    Article  Google Scholar 

  91. Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 30(3), 291–319 (2018). https://doi.org/10.1016/j.jksuci.2016.10.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Arturo Domínguez-Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Domínguez-Miranda, S.A., Rodríguez-Aguilar, R. (2024). Health 4.0, Prevention, and Health Promotion in Companies: A Systematic Literature Review. In: Marmolejo-Saucedo, J.A., Rodríguez-Aguilar, R., Vasant, P., Litvinchev, I., Retana-Blanco, B.M. (eds) Computer Science and Engineering in Health Services. COMPSE 2022. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-34750-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34750-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34749-8

  • Online ISBN: 978-3-031-34750-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics