Skip to main content

The Biofortification of Zinc in Legumes to Alleviate Zinc Deficiency

  • Chapter
  • First Online:
Legumes Biofortification

Abstract

Micronutrient malnutrition is a serious health problem in the world that requires serious attention. About two billion people around the globe are facing micronutrient malnutrition. The reduced zinc (Zn) availability in soil decreases the Zn concentration in dietary products, which is causing Zn deficiency in humans. Globally, different strategies are being used to improve the Zn concentration in grains to reduce Zn deficiency in humans. Fortification is considered an important strategy for enriching cereals with Zn and thus reducing Zn deficiency in humans. However, this strategy is costly, and low-income countries cannot afford it. In this context, agronomic and breeding approaches have emerged as excellent strategies to increase Zn concentration in grains in order to fulfill human needs. The breeding strategy is costly and time-consuming, and agronomic techniques (fertilizer application) are considered important strategies for increasing Zn contents in grains. Legumes are widely used around the world as food and the biofortification of legumes could be a promising approach to minimizing Zn deficiency in humans. Herein, we present information on the role of Zn in plants and humans and concept of Zn biofortification to mitigate Zn deficiency in humans. We also discuss the role of fertilization methods and breeding and molecular approaches to improve Zn concentrations in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas Y, Ahmad A (2018) Impact of processing on nutritional and anti-nutritional factors of legumes: a review. Ann Food Sci Technol 19(2):199–215

    CAS  Google Scholar 

  • Aciksoz SB, Yazici A, Ozturk L, Cakmak I (2011) Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil 349:215–225

    Article  CAS  Google Scholar 

  • Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Aref F (2007) The effect of zinc and boron interaction on residual available phosphorous and zinc. Soil Environ 26(2):157–163

    Google Scholar 

  • Banziger M, Long J (2000) The potential for increasing the iron and zinc density of maize through plant breeding. Food Nutr Bull 21:397–400

    Article  Google Scholar 

  • Bhutta Z, Black R, Brown K, Gardner J, Gore S, Hidayat A, Khatun F, Martorell R, Ninh N, Penny M et al (1999) Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: pooled analysis of randomized controlled trials. J Pediatr 135:689–697

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20–S-32

    Article  Google Scholar 

  • Braun HJ (1999) Prospects of Turkey’s wheat industry, breeding and biotechnology. In: Ekiz H (ed) Hububat Sempozyum. International Winter Cereal Research Center, Konya, pp 1–744

    Google Scholar 

  • Brown PH, Cakmak I, Zhang Q (1993) Form and function of zinc plants. In: Zinc in soils and plants. Springer, Dordrecht, pp 93–106

    Chapter  Google Scholar 

  • Buerkert A, Haake C, Ruckwied M, Marschner H (1998) Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Res 57:223–235

    Article  Google Scholar 

  • Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C (2019) A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci 10:1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakmak I (2000) Tansley Review No. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cakmak I, Kutman UB (2018) Agronomic biofortification of cereals with zinc: a review. Eur J Soil Sci 69:172–180

    Article  Google Scholar 

  • Cakmak I, Yilmaz A, Ekiz H, Torun B, Erenoglu B, Braun HJ (1996) Zinc deficiency as a critical nutritional problem in wheat production in Central Anatolia. Plant Soil 180:165–172

    Article  CAS  Google Scholar 

  • Cakmak I, Graham R, Welch RM (2002) Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally. Encycl Life Support Syst 1:1075–1099

    Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Review: biofortification of durum wheat with zinc and iron. Cereal Chem J 87:10–20

    Article  CAS  Google Scholar 

  • Cakmakçi R, Dönmez F, Aydın A, Sahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chatterjee P, Nirgude A, Chatterjee PK (2022) Healthy eating–a modifiable contributor to optimize healthy living in the COVID-19 pandemic: a review. J Sci Food Agric 102(5):1751–1758

    Article  CAS  PubMed  Google Scholar 

  • Chattha MU, Hassan MU, Khan I, Chattha MB, Mahmood A, Chattha MU et al (2017) Biofortification of wheat cultivars to combat zinc deficiency. Front Plant Sci 8:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Das S, Chaki AK, Hossain A (2019) Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: a Bangladesh perspective. Acta Agrobot 72:1–13

    Article  Google Scholar 

  • De Valença A, Bake A, Brouwer I, Giller K (2017) Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob Food Secur 12:8–14

    Article  Google Scholar 

  • Dhaliwal SS, Sharma V, Shukla AK, Verma V, Behera SK, Singh P et al (2021) Comparative efficiency of mineral, chelated and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agronomy 11:2436

    Article  CAS  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Taran B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea ( Cicer arietinum L.). Genome 57:459–468

    Article  CAS  PubMed  Google Scholar 

  • Disante KB, Fuentes D, Cortina J (2011) Response to drought of Zn-stressed Quercus suber L. seedlings. Environ Exp Bot 70:96–103

    Article  CAS  Google Scholar 

  • Du HY, Liu DX, Liu GT, Liu HP, Kurtenbach R (2018) Relationship between polyamines and anaerobic respiration of wheat seedling root under water-logging stress. Russ J Plant Physiol 65:874–881

    Article  CAS  Google Scholar 

  • Egli I, Davidsson L, Zeder C, Walczyk T, Hurrell R (2004) Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J Nutr 134:1077–1080

    Article  CAS  PubMed  Google Scholar 

  • Erdal I, Yilmaz A, Taban S, Eker SELÄ°M, Torun B, Cakmak I (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25(1):113–127

    Article  CAS  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ( 65 Zn) in wheat. New Phytol 189:438–448

    Article  CAS  PubMed  Google Scholar 

  • FAO; IFAD; UNICEF; WFP; WHO (2020) The state of food security and nutrition in the world 2020: transforming food systems for affordable healthy diets. FAO, Rome

    Google Scholar 

  • Figueira N, Curtain F, Beck E, Grafenauer S (2019) Consumer understanding and culinary use of legumes in Australia. Nutrients 11:1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK et al (2020) Enhancing the nutritional quality of major food crops through conventional and genomics-assisted breeding. Front Nutr 7:533453

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Hoffland E, Stomph T, Grant CA, Zou C, Zhang F (2012) Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agron Sustain Dev 32:465–478

    Article  CAS  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant Soil 361:291–299

    Article  CAS  Google Scholar 

  • Glahn RP, Wiesinger JA, Lung’aho MG (2020) Iron concentrations in biofortified beans and nonbiofortified marketplace varieties in East Africa are similar. J Nutr 150:3013–3023

    Article  PubMed  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Gundersen C, Ziliak JP (2015) Food insecurity and health outcomes. Health Aff 34:1830–1839

    Article  Google Scholar 

  • Guo Y, Yu Y, Wang D, Wu C, Yang G, Huang J, Zheng C (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    Article  CAS  PubMed  Google Scholar 

  • Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition—a review. Am J Exp Agric 3:374–391

    CAS  Google Scholar 

  • Haider MU, Farooq M, Nawaz A, Hussain M (2018) Foliage applied zinc ensures better growth, yield and grain biofortification of mungbean. Int J Agric Biol 20:2817–2822

    Google Scholar 

  • Haider MU, Hussain M, Farooq M, Nawaz A (2020) Zinc nutrition for improving the productivity and grain biofortification of mungbean. J Soil Sci Plant Nutr 20(3):1321–1335

    Article  CAS  Google Scholar 

  • Haider MU, Hussain M, Farooq M, Ul-Allah S, Ansari MJ, Alwahibi MS et al (2021) Zinc biofortification potential of diverse mungbean [Vigna radiata (L.) Wilczek] genotypes under field conditions. PLoS One 16:e0253085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hambidge KM (1997) Zinc deficiency in young children. Am J Clin Nutr 65:160–161

    Article  CAS  PubMed  Google Scholar 

  • Harris D, Rashid A, Miraj G, Arif M, Yunas M (2008) ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil 306:3–10

    Article  CAS  Google Scholar 

  • HarvestPlus (2014) Biofortification progress briefs: iron and zinc lentils. 〈https://www.harvestplus.org/sites/default/files/publications/Biofortification_Progress_Briefs_August2014_WEB_2_0.pdf〉

  • Haslett BS, Reid RJ, Rengel Z (2001) Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Ann Bot 87:379–386

    Article  CAS  Google Scholar 

  • Hemalatha S, Platel K, Srinivasan K (2007) Zinc and iron contents and their bioaccessibility in cereals and pulses consumed in India. Food Chem 102:1328–1336

    Article  CAS  Google Scholar 

  • Hidoto L, Worku W, Mohammed H, Taran B (2017) Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. J Soil Sci Plant Nutr 17:112–126

    CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S91–S204

    Google Scholar 

  • Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Hussain N, Khan MB, Ahmad R, Ali MA, Ahmed N, Saeed S (2011) Physiochemical traits, productivity and net return of wheat as affected by phosphorus and zinc requirements under arid climates. Pak J Bot 43(2):991–1002

    CAS  Google Scholar 

  • Hussain S, Maqsood MA, Rengel Z, Aziz T (2012) Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 361:279–290

    Article  CAS  Google Scholar 

  • Islam MM, Karim MR, Oliver MMH, Urmi TA, Hossain MA, Haque MM (2018) Impacts of trace element addition on lentil (Lens culinaris L.) agronomy. Agronomy 8:100

    Article  CAS  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi-Saha A, Mehzabin P, Reddy KS, Ramachandran V (2018) Effect of seasonal variation on micronutrient content in chickpea (Cicer arietinum L.) and identification of accessions having high iron and zinc. J Food Legumes 31:1–4

    Google Scholar 

  • Jurowski K, Szewczyk B, Nowak G, Piekoszewski W (2014) Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. JBIC J Biol Inorg Chem 19(7):1069–1079

    Article  CAS  PubMed  Google Scholar 

  • Karim R, Zhang Y-Q, Zhao R-R, Chen X-P, Zhang F-S, Zou C-Q (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J Plant Nutr Soil Sci 175:142–151

    Article  Google Scholar 

  • Kasim WA (2007) Physiological consequences of structural and ultra-structural changes induced by Zn stress in Phaseolus vulgaris. I. Growth and photosynthetic apparatus. Int J Bot 3:15–22

    Article  CAS  Google Scholar 

  • Khan MU, Qasim M, Subhan M, Jamil M, Ahmad RD (2003) Response of rice to different methods of zinc application in calcareous soil. Pak J Appl Sci 3:524–529

    Article  Google Scholar 

  • Khoshgoftarmanesh AH, Schulin R, Chaney RL, Daneshbakhsh B, Afyuni M (2010) Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture—a review. Agron Sustain Dev 30:83–107

    Article  CAS  Google Scholar 

  • Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9

    Article  CAS  Google Scholar 

  • Li C, Lv J, Zhao X, Ai X, Zhu X, Wang M, Zhao S, Xia G (2010) TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiol 154:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay WL, Mortvedt JJ (2018) Inorganic equilibria affecting micronutrients in soils. Micronutr Agric 4:89–112

    Article  Google Scholar 

  • Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30(3):371–382

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Hall DA, Last RL (2011) A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell 23:1861–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig Y, Slamet-Loedin IH (2019) Genetic biofortification to enrich rice and wheat grain iron: from genes to product. Front Plant Sci 10:833

    Article  PubMed  PubMed Central  Google Scholar 

  • Lusk J (2020) Economic impacts of covid-19 on food and agricultural markets. CAST Commentary Council for Agricultural Science and Technology, 1–44

    Google Scholar 

  • Malesh AA, Mengistu DK, Aberra DA (2016) Linking agriculture with health through genetic and agronomic biofortification. Agric Sci 2016(7):295–307

    Google Scholar 

  • Maqbool MA, Beshir A (2019) Zinc biofortification of maize (Zea mays L.): status and challenges. Plant Breed 138:1–28

    Article  CAS  Google Scholar 

  • Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathpal B, Srivastava PC, Shankhdhar D, Shankhdhar SC (2015) Zinc enrichment in wheat genotypes under various methods of zinc application. Plant Soil Environ 61:171–175

    Article  CAS  Google Scholar 

  • McDonald GK, Genc Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55

    Article  CAS  Google Scholar 

  • Miro B, Ismail AM (2013) Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci 4:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra G, Joshi-Saha A, Salaskar D, Reddy KS, Dixit GP, Srivastava AK et al (2020) Baseline status and effect of genotype, environment and genotype × environment interactions on iron and zinc content in Indian chickpeas (Cicer arietinum L.). Euphytica 216:137

    Article  CAS  Google Scholar 

  • Moretti D, Biebinger R, Bruins MJ, Hoeft B, Kraemer K (2013) Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Ann N Y Acad Sci 1312:54–65

    Article  PubMed  Google Scholar 

  • Mousavi SR (2011) Zinc in crop production and interaction with phosphorus. Aust J Basic Appl Sci 5:1503–1509

    CAS  Google Scholar 

  • Naik SM, Raman AK, Nagamallika M, Venkateshwarlu C, Singh SP, Kumar S et al (2020) Genotype × environment interactions for grain iron and zinc content in rice. J Sci Food Agric 100:4150–4164

    Article  CAS  PubMed  Google Scholar 

  • Onyango AW (2003) Dietary diversity, child nutrition and health in contemporary African communities. Comp Biochem Physiol Part A Mol Integr Physiol 136:61–69

    Article  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Pal V, Singh G, Dhaliwal SS (2021) A new approach in agronomic biofortification for improving zinc and iron content in chickpea (Cicer arietinum L.) grain with simultaneous foliar application of zinc sulphate, ferrous sulphate and urea. Journal of. Soil Sci Plant Nutr 21(2):883–896

    Article  CAS  Google Scholar 

  • Pearson J, Rengel Z (1994) Distribution and remobilization of Zn and Mn during grain development in wheat. J Exp Bot 45:1829–1835

    Article  CAS  Google Scholar 

  • Peck AW, McDonald GK (2010) Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil 337:355–374

    Article  CAS  Google Scholar 

  • Perera T, Russo C, Takata Y, Bobe G (2020) Legume consumption patterns in US adults: national health and nutrition examination survey (NHANES) 2011–2014 and Beans, Lentils, Peas (BLP) 2017 survey. Nutrients 12:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T et al (2017) Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Front Plant Sci 8:712

    Article  PubMed  PubMed Central  Google Scholar 

  • Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M et al (2021) Zinc biofortification in food crops could alleviate the zinc malnutrition in human health. Molecules 26(12):3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad R (2007) Crop nutrition—principles and practices. New Vishal Publications, Delhi, India, p 272

    Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91

    Article  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2016) Interactions of zinc with other nutrients in soils and plants—a review. Indian J Fertil 12:16–26

    Google Scholar 

  • Rebello CJ, Greenway FL, Finley JW (2014) A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev 15:392–407

    Article  CAS  PubMed  Google Scholar 

  • Reddy A (2010) Regional disparities in food habits and nutritional intake in Andhra Pradesh, India. Regional disparities in food habits and nutritional intake in Andhra Pradesh, India (May 19, 2010). Reg Sect Econ Stud 10(2):125–134

    Google Scholar 

  • Rehman A, Farooq M, Ahmad R, Basra S (2015) Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci Technol 43:262–268

    Article  Google Scholar 

  • Rengel Z (2015) Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr 15:397–409

    Google Scholar 

  • Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144–157

    PubMed  PubMed Central  Google Scholar 

  • Ruel MT, Alderman H, Maternal and Child Nutrition Study Group (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551

    Article  PubMed  Google Scholar 

  • Saha S, Chakraborty M, Padhan D, Saha B, Murmu S, Batabyal K, Seth A, Hazra GC, Mandal B, Bell RW (2017) Agro-nomic biofortification of zinc in rice: influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Res 210:52–60

    Article  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y et al (2013) Biofortification: Progress toward a more nourishing future. Glob Food Sect 2:9–17

    Article  Google Scholar 

  • Sarker A, Agrawal SK (2015) Combating micronutrient malnutrition with biofortified lentils. CARDA Res Brief 1:1–4

    Google Scholar 

  • Shahzad Z, Rouached H, Rakha A (2014) Combating mineral malnutrition through iron and zinc biofortification of cereals. Compr Rev Food Sci Food Saf 13(3):329–346

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC (2013) Zinc—An indispensable micronutrient. Physiol Mol Biol Plants 19:11–20

    Article  CAS  PubMed  Google Scholar 

  • Shivay YS, Singh U, Prasad R, Kaur R (2016) Agronomic interventions for micronutrient biofortification of pulses. Indian J Agron 61:161–172

    Google Scholar 

  • Silva VM, Nardeli AJ, Mendes NAC, Rocha MM, Wilson L, Young SD et al (2021) Agronomic biofortification of cowpea with zinc: variation in primary metabolism responses and grain nutritional quality among 29 diverse genotypes. Plant Physiol Biochem 162:378–387

    Article  CAS  PubMed  Google Scholar 

  • Singh MV (2008) Micronutrient deficiencies in crops and soils in India. Micronutrient Deficiencies in Global Crop Production, pp 93–125

    Google Scholar 

  • Singh U, Kumar N, Praharaj CS, Singh SS, Kumar L (2015) Ferti-fortification: an easy approach for nutritional enrichment of chickpea. Ecoscan 9(3 & 4):731–736

    CAS  Google Scholar 

  • Sparks DL (2015) Kinetics of soil chemical phenomena: future directions. Future Prospect Soil Chem 55:81–101

    Article  Google Scholar 

  • Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57:399–411

    Article  CAS  PubMed  Google Scholar 

  • Tavallali V, Rahemi M, Eshghi S, Kholdebarin B, Ramezanian A (2010) Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk J Agric Forest 34:349–359

    CAS  Google Scholar 

  • Tobin AJ (1970) Carbonic anhydrase from parsley leaves. J Biol Chem 245:2656–2666

    Article  CAS  PubMed  Google Scholar 

  • Tsonev T, Cebola Lidon FJ (2012) Zinc in plants-an overview. Emir J Food Agric 24(4)

    Google Scholar 

  • Tye A, Young S, Crout N, Zhang H, Preston S, Barbosa-Jefferson V, Davison W, McGrath S, Paton G, Kilham K et al (2003) Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim Cosmochim Acta 67:375–385

    Article  CAS  Google Scholar 

  • Udechukwu MC, Collins SA, Udenigwe CC (2016) Prospects of enhancing dietary zinc bioavailability with food-derived zincchelating peptides. Food Funct 7:4137–4144

    Article  CAS  PubMed  Google Scholar 

  • Uriu-Adams JY, Keen CL (2010) Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res B Dev Reprod Toxicol 89(4):313–325

    Article  CAS  PubMed  Google Scholar 

  • Van Der Straeten D, Bhullar NK, De Steur H, Gruissem W, MacKenzie D, Pfeiffer W et al (2020) Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun 11:5203

    Article  PubMed  Google Scholar 

  • Vandemark GJ, Grusak MA, McGee RJ (2018) Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the U.S. Pac Northwest Crop J 6:253–262

    Google Scholar 

  • Veenemans J, Milligan P, Prentice AM, Schouten LR, Inja N, Van Der Heijden AC, De Boer LC, Jansen EJ, Koopmans AE, Enthoven WT et al (2011) Effect of supplementation with zinc and other micronutrients on malaria in Tanzanian children: a randomised trial. PLoS Med 8:e1001125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372

    Article  CAS  Google Scholar 

  • Wang Y, Branicky R, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Mineral nutrition of crops: fundamental mechanisms and implications. Food Products Press, New York, pp 205–226

    Google Scholar 

  • Welch RM (2005) Biotechnology, biofortification, and global health. Food Nutr Bull 26(4_suppl3):S304–S306

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  PubMed  Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7:e50568

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley M (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • Wilkinson HF, Loneragan JF, Quirk JP (1968) The movement of zinc to plant roots. Soil Sci Soc Am J 32:831–833

    Article  Google Scholar 

  • Yaseen MK, Hussain S (2021) Zinc-biofortified wheat required only a medium rate of soil zinc application to attain the targets of zinc biofortification. Arch Agron Soil Sci 67:551–562

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Torun B, Gultekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J Plant Nutr 20:461–471

    Article  CAS  Google Scholar 

  • Yilmaz A, Ekiz H, Gültekin I, Torun B, Barut H, Karanlik S, Cakmak I (1998) Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J Plant Nutr 21:2257–2264

    Article  CAS  Google Scholar 

  • Zaman QU, Aslam Z, Yaseen M, Ihsan MZ, Khaliq A, Fahad S, Bashir S, Ramzani PMA, Naeem M (2018) Zinc biofortification in rice: leveraging agriculture to moderate hidden hunger in developing countries. Arch Agron Soil Sci 64:147–161

    Article  Google Scholar 

  • Zastrow ML, Pecoraro VL (2014) Designing hydrolytic zinc metalloenzymes. Biochemistry 53:957–978

    Article  CAS  Google Scholar 

  • Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M (2014) A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot 65:5795–5809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang ZH, Sohu VS et al (2012) Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361:119–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aslam, M.T. et al. (2023). The Biofortification of Zinc in Legumes to Alleviate Zinc Deficiency. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. https://doi.org/10.1007/978-3-031-33957-8_14

Download citation

Publish with us

Policies and ethics