Skip to main content

Abstract

A self-sufficient multi-species and multi-mechanism reactive-transport modelling framework for concrete is presented. The modelling framework is “self-sufficient” as its input data only include the chemical composition of the cementitious materials (e.g., cement, supplementary cementitious materials, etc.) and mixture proportions of the analysed concrete (e.g., water-binder ratio, aggregate content). The approach allows the calculation of transport properties of concrete using the formation factor of concrete, which can be calculated using the recently developed pore partitioning approach for concrete. This approach extends the Powers-Brownyard model to include concrete incorporating supplementary cementitious material and combines it with thermodynamic calculations to obtain electrical properties of concrete. These thermodynamic calculations predict pore solution composition, pore solution resistivity, pore volumes, and reactions between the solid and ionic components of the cementitious matrix such as pozzolanic processes, hydration, and chloride binding. The framework allows the solution of reactive-transport equations with minimal input data that is easily accessible to assess key transport questions related to service life such as ionic movement, chloride ingress, and time to corrosion. The approach eliminates the costly need to determine the transport properties of concrete experimentally, which are, in most cases, inaccurate because they do not represent the actual transport mechanisms that are intended to be simulated. This modelling framework has the potential to be used in conjunction with performance specifications currently being developed in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharadwaj, K., et al.: A new mixture proportioning method for performance-based concrete. ACI Mater. J. 119(2), 218 (2022)

    Google Scholar 

  2. Azad, V.J., Li, C., Verba, C., Ideker, J.H., Isgor, O.B.: A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes. Comput. Geosci. 92, 79–89 (2016)

    Article  Google Scholar 

  3. Karadakis, K., Azad, V.J., Ghods, P., Isgor, O.B.: Numerical investigation of the role of mill scale crevices on the corrosion initiation of carbon steel reinforcement in concrete. J. Electrochem. Soc. 163(6), C306–C315 (2016)

    Article  Google Scholar 

  4. Isgor, O.B., Weiss, W.J.: A nearly self-sufficient framework for modelling reactive-transport processes in concrete. Mater. Struct. 52(6), 3 (2019)

    Article  Google Scholar 

  5. Jason Weiss, W., Spragg, R.P., Burkan Isgor, O., Tyler Ley, M., Van Dam, T.: Toward performance specifications for concrete: Linking resistivity, RCPT and diffusion predictions using the formation factor for use in specifications. In: Hordijk, D.A., Luković, M. (eds.) High Tech Concrete: Where Technology and Engineering Meet, pp. 2057–2065. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-59471-2_235

    Chapter  Google Scholar 

  6. AASHTO, AASHTO TP 119 - Standard Method of Test for Electrical Resistivity of a Concrete Cylinder Tested in a Uniaxial Resistance Test. American Association of State and Highway Transportation Officials: Washington, DC. p. 12 (2015)

    Google Scholar 

  7. Chang, M.T., Montanari, L., Suraneni, P., Weiss, W.J.: Expression of cementitious pore solution and the analysis of its chemical composition and resistivity using x-ray fluorescence. J. Vis. Exp. 139 (2018)

    Google Scholar 

  8. Snyder, K.A., Feng, X., Keen, B.D., Mason, T.O.: Estimating the electrical conductivity of cement paste pore solutions from OH-, K+ and Na+ concentrations. Cem. Concr. Res. 33(6), 793–798 (2003)

    Article  Google Scholar 

  9. Lothenbach, B., Matschei, T., Möschner, G., Glasser, F.P.: Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 38(1), 1–18 (2008)

    Article  Google Scholar 

  10. Kulik, D.A.,et al.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. (2012)

    Google Scholar 

  11. Glosser, D., Azad, V.J., Suraneni, P., Isgor, O.B., Weiss, W.J.: An extension of the Poers-Brownyard model to pastes containing SCM. ACI Mater. J. 116, 205–216 (2019)

    Google Scholar 

  12. Azad, V.J., Suraneni, P., Isgor, O.B., Weiss, W.J.: Interpreting the pore structure of hydrating cement phases through a synergistic use of the Powers-Brownyard model, hydration kinetics, and thermodynamic calculations. Adv. Civil Eng. Mater. 6(1), 1–16 (2017)

    Google Scholar 

  13. Bharadwaj, K., Glosser, D., Moradllo, M.K., Isgor, O.B., Weiss, J.: Toward the prediction of pore volumes and freeze-thaw performance of concrete using thermodynamic modelling. Cem. Concr. Res. 124, 105820 (2019)

    Article  Google Scholar 

  14. Garboczi, E.J., Bentz, D.P.: Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 27(8), 2083–2092 (1992)

    Article  Google Scholar 

  15. Koponen, A., Kataja, M., Timonen, J.: Permeability and effective porosity of porous media. Phys. Rev. E 56(3), 3319–3325 (1997)

    Article  Google Scholar 

  16. Bharadwaj, K., Ghantous, R.M., Sahan, F., Isgor, O.B., Weiss, W.J.: Predicting pore volume, compressive strength, pore connectivity, and formation factor in cementitious pastes containing fly ash. Cem. Conc. Compos. 122, 10411 (2021)

    Article  Google Scholar 

  17. Kulik, D.A.: Improving the structural consistency of CSH solid solution thermodynamic models. Cem. Concr. Res. 41(5), 477–495 (2011)

    Article  Google Scholar 

  18. Kulik, D.A., et al.: GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 17(1), 1–24 (2013)

    MATH  Google Scholar 

  19. Dilnesa, B.Z., Lothenbach, B., Renaudin, G., Wichser, A., Wieland, E.: Stability of monosulfate in the presence of iron. J. Am. Ceram. Soc. 95(10), 3305–3316 (2012)

    Article  Google Scholar 

  20. Lothenbach, B., et al.: Cemdata 18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem. Concr. Res. 115, 472–506 (2019)

    Article  Google Scholar 

  21. Myers, R.J., Bernal, S.A., Provis, J.L.: A thermodynamic model for C-(N-) ASH gel: CNASH_ss. derivation and validation. Cem. Concr. Res. 66, 27–47 (2014)

    Article  Google Scholar 

  22. Parrot, L.J.: Prediction of cement hydration. In: Proceedings of the British Ceramic Society (1984)

    Google Scholar 

  23. Choudhary, A., Bharadwaj, K., Ghantous, R.M., Isgor, O.B., Weiss, W.J.: Pozzolanic reactivity test of supplementary cementitious materials. ACI Mater. J. 119(2), 1–96 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Burkan Isgor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burkan Isgor, O., Jason Weiss, W. (2023). Self-sufficient Reactive Transport Modelling in Cement-Based Materials with Low-Carbon Footprint. In: Jędrzejewska, A., Kanavaris, F., Azenha, M., Benboudjema, F., Schlicke, D. (eds) International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-based Materials and Concrete Structures. SynerCrete 2023. RILEM Bookseries, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-031-33211-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33211-1_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33210-4

  • Online ISBN: 978-3-031-33211-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics