Skip to main content

The peritoneal microcirculation

  • Chapter
Peritoneal dialysis

Abstract

The peritoneal membrane which surrounds the peritoneal cavity covers a maze of complex organs and tissues (e.g., stomach, small intestine, large intestine, liver, abdominal wall muscles, and mesentery). These tissues have independent and often dissimilar blood flow regulatory mechanisms. Thus, during peritoneal dialysis there are a multitude of very different vascular areas that are available for transfer of solutes from the blood, through the interstitial tissue and the peritoneal membrane, to the peritoneal cavity. The combined circulatory functions of these tissues will ultimately regulate the type and quantity of solutes eliminated by peritoneal dialysis. Aside from basic physiological differences among tissues, there are, in addition, numerous factors which can independently influence the local control of blood flow in these regions. Neural inputs, drugs, metabolic products, local hormones, excitement, exercise, and intestinal motility all may have a profound effect on the delivery of solutes (via peritoneal blood flow) to the areas of solute transport and on the permeability of the vasculature. In addition, diseases both systemic (e.g. hypertension) and local (e.g. peritonitis, cancer) have been shown to alter blood flow patterns or vascular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crafts RC: A Textbook of Human Anatomy. The Ronald Press Company, New York 1966.

    Google Scholar 

  2. Frasher WG Jr, Wayland H: A repeating modular organization of the microcirculation of cat mesentery. Microvasc Res 4: 62–76, 1972.

    PubMed  Google Scholar 

  3. Lukas G, Brindle SD, Greengard P: The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 178: 562–566, 1971.

    PubMed  CAS  Google Scholar 

  4. Casley-Smith JR: Calculations relating to the passage of fluid and protein out of arterial-limb fenestrae through basement membranes and connective tissue channels, and into venous-limb fenestrae and lymphatics. Microvasc Res 12: 13–34, 1976.

    PubMed  CAS  Google Scholar 

  5. Granger HJ: Role of the interstitial matrix and lymphatic pump in regulation of transcapillary fluid balance. Microvasc Res 18: 209–216, 1979.

    PubMed  CAS  Google Scholar 

  6. Fraser PA, Smaje LH, Verrindes A: Microvascular pressures and filtration coefficients in the cat mesentery. J Physiol (London) 283: 439–456, 1978.

    CAS  Google Scholar 

  7. Casley-Smith JR, Sims MA: Protein concentrations in regions with fenestrated and continuous blood capillaries and in initial and collecting lymphatics. Microvasc Res 12: 245–257, 1976.

    PubMed  CAS  Google Scholar 

  8. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, Twardowski ZJ, Ghods AJ: Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 15: 630–639, 1979.

    PubMed  CAS  Google Scholar 

  9. Rubin J, Nolph KD, Arfania D, Joshua IG, Miller FN, Wiegman DL, Harris PD: Clinical studies with a nonvasoactive peritoneal dialysis solution. J Lab Clin Med 93: 910–925, 1979.

    PubMed  CAS  Google Scholar 

  10. Nolph KD, Rubin J, Wiegman DL, Harris PD, Miller FN: Peritoneal clearances with three types of commercially available peritoneal dialysis solutions. Effects of pH adjustment and intraperitoneal nitroprusside. Nephron 24: 35–40, 1979.

    CAS  Google Scholar 

  11. Bohlen HG, Gore RW: Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc Res 14: 251–264, 1977.

    PubMed  CAS  Google Scholar 

  12. Baez S: An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5: 384–394, 1973.

    PubMed  CAS  Google Scholar 

  13. Smaje L, Zweifach BW, Intaglietta M: Micropressures and capillary filtration coefficients in single vessels of the cremaster muscle in the rat. Microvasc Res 2: 96–110, 1970.

    PubMed  CAS  Google Scholar 

  14. Rhodin JAG: Histology: A Text and Atlas. Oxford University Press, New York 1974.

    Google Scholar 

  15. Noer RJ: The blood vessels of the jejenum and ileum: A comparative study of man and certain laboratory animals. Am J Anat 73: 293–334, 1943.

    Google Scholar 

  16. Fox J, Galey F, Wayland H: Action of histamine on the mesenteric microvasculature. Microvasc Res 19: 108–126, 1980.

    PubMed  CAS  Google Scholar 

  17. Jacobson LF, Noer RJ: The vascular pattern of the intestinal villi in various laboratory animals and man. Anat Res 114: 85–101, 1952.

    CAS  Google Scholar 

  18. Allen L, Vogt E: A mechanism of lymphatic absorption from serous cavities. Am J Physiol 119: 776–782, 1937.

    CAS  Google Scholar 

  19. Tsilibary EC, Wissig SL: Lymphatic absorption from the peritoneal cavity: regulation of patency of mesothelial stomata. Microvasc Res 25: 22–39, 1983.

    PubMed  CAS  Google Scholar 

  20. Casley-Smith JR: Varying total tissue pressures and the concentration of initial lymphatic lymph. Microvasc Res 25: 369–379, 1983.

    PubMed  CAS  Google Scholar 

  21. McHale NG, Allen JM: The effect of external Ca2+ concentration on the contractility of bovine mesenteric lymphatics. Microvasc Res 26: 182–192, 1983.

    PubMed  CAS  Google Scholar 

  22. Joshua IG, Wiegman DL, Harris PD, Miller FN: Progressive microvascular alterations with the development of renovascular hypertension. Hypertension 6: 61–67, 1984.

    PubMed  CAS  Google Scholar 

  23. Miller FN, Anderson GL: Alterations in histamine-induced protein leakage during renovascular hypertension. Microvasc Res 25: 249, 1983.

    Google Scholar 

  24. Parving HH, Rossing N, Jensen HAE: Increased metabolic turnover rate and transcapillary escape rate of albumin in essential hypertension. Circ Res 35: 544–552, 1974.

    PubMed  CAS  Google Scholar 

  25. Van Den Brenk H, Crowe M, Kelly H, Stone M: The significance of free blood in liquid and solid tumors. Br J Exp Pathol 58: 147–159, 1977.

    PubMed  Google Scholar 

  26. Katano M, Torisu M: New approach to management of malignant ascites with a streptococcal preparation OK-432. II Intraperitoneal inflammatory cell-mediated tumor cell destruction. Surgery 93: 365–373, 1983.

    PubMed  CAS  Google Scholar 

  27. Heuser LS, Taylor SH, Folkman JF: Prevention of carcinomatosis in the rat. J Surg Res (in press).

    Google Scholar 

  28. Nolph KD, Miller FN, Rubin J, Popovich R: New directions in peritoneal dialysis concepts and applications. Kidney Int 18: S111–S116, 1980.

    Google Scholar 

  29. Renkin EM: Relation of capillary morphology to transport of fluid and large molecules: A review. Acta Physiol Scand (Suppl) 463: 81–91, 1979.

    CAS  Google Scholar 

  30. Chambers R, Zweifach BW: Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann NY Acad Sci 46: 683–695, 1946.

    Google Scholar 

  31. Westergaard E, Brightman MW: Transport of proteins across normal cerebral arterioles. J Comp Neurol 152: 17–44, 1973.

    PubMed  CAS  Google Scholar 

  32. Henriksen JH: Permselectivity of the liver blood-lymph (ascitic fluid) barrier to macromolecules in decompensated cirrhosis: relation to caculated pore-size. Clin Physiol 3: 163–171, 1983.

    PubMed  CAS  Google Scholar 

  33. Miller FN, Hammerschmidt DE, Anderson GL, Moore JN: Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 25: 480–485, 1984.

    PubMed  CAS  Google Scholar 

  34. Bruns RR, Palade GE: Studies on blood capillaries. II Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol 37: 277–299, 1968.

    PubMed  CAS  Google Scholar 

  35. Simionescu N, Simionescu M, Palade GE: Structural basis of permeability in sequential segments of the microvasculature of the diaphram. II Pathways followed by microperoxidase across the endothelium. Microvasc Res 15: 17–36, 1978.

    PubMed  CAS  Google Scholar 

  36. Casley-Smith JR: Endothelial fenestrae in intestinal villi. Difference between the arterial and venous ends of the capillaries. Microvasc Res 3: 49–68, 1971.

    PubMed  CAS  Google Scholar 

  37. Karnovsky MJ: The ultrastructural basis of transcapillary exchanges. J Gen Physiol 52: 64S–95S, 1968.

    Google Scholar 

  38. Krogh A: The Anatomy and Physiology of Capillaries (rev. and 2nd ed.). Yale University Press, New Haven, Connecticut 1929.

    Google Scholar 

  39. Chambers R, Zweifach BW: Topography and function of the mesenteric capillary microcirculation. Am J Anat 75: 173–205, 1944.

    Google Scholar 

  40. Rhodin JAG: Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 25: 452–500, 1968.

    PubMed  CAS  Google Scholar 

  41. Sims DE, Westfall JA: Analysis of relationships between pericytes and gas exchange capillaries in neonatal and mature bovine lungs. Microvasc Res 25: 333–342, 1983.

    PubMed  CAS  Google Scholar 

  42. Nakamura Y, Wayland H: Macromolecular transport in the cat mesentery. Microvasc Res 9: 1–21, 1975.

    PubMed  CAS  Google Scholar 

  43. Wolff JR: Ultrastructure of the terminal vascular bed as related to function in microcirculation. In: G Kaley, BM Altura (eds). University Park Press, Baltimore 1977.

    Google Scholar 

  44. Majno G: Ultrastructure of the Vascular Membrane. In: WF Hamilton, P Dow (eds). Handbook of Psysiology, Section 2: Circulation Vol. III. Am Physiol Soc, Washington, DC, 1965, pp 2293-2375.

    Google Scholar 

  45. Clementi F, Palade GE: Intestinal capillaries. I Permeability to peroxidase and ferritin. J Cell Biol 41: 33–58, 1969.

    PubMed  CAS  Google Scholar 

  46. Granger DN, Taylor AE: Permeability of intestinal capillaries to endogenous macromolecules. Am J Physiol 238: H457–H464, 1980.

    PubMed  CAS  Google Scholar 

  47. Johansson BR: Permeability of muscle capillaries to interstitially microinjected horseradish peroxidase. Microvasc Res 16: 340–353, 1978.

    PubMed  CAS  Google Scholar 

  48. Johansson BR: Permeability of muscle capillaries to interstitially microinjected ferritin. Microvasc Res 16: 362–368, 1978.

    PubMed  CAS  Google Scholar 

  49. Dedrick RL, Flessner MF, Collins JM, Schultz JS: Is the peritoneum a membrane? Am Soc Artif Intern Organs 5: 1–8, 1982.

    Google Scholar 

  50. Laurent TC: II The ultrastructure and physical-chemical properties of interstitial connective tissue. Pfluegers Arch (Suppl) 336: S21–S42, 1972.

    Google Scholar 

  51. Laurent TC: Interaction between proteins and glycosamineoglycans. Fed Proc 36: 24–27, 1977.

    PubMed  CAS  Google Scholar 

  52. Fox JR, Wayland H: Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res 18: 255–276, 1979.

    PubMed  CAS  Google Scholar 

  53. Wiederhielm CA: The interstitial space. In: YC Fung, N Perrone, M Anliker (eds). Biomechanics, its foundations and objectives. Prentice Hall, Englewood Cliffs, New Jersey, 1972, pp 273–286.

    Google Scholar 

  54. Watson PD, Grodins FS: An analysis of the effects of the interstitial matrix on plasma-lymph transport. Microvasc Res 16: 19–41, 1978.

    PubMed  CAS  Google Scholar 

  55. Miller FN, Nolph KD, Joshua IG, Wiegman DL, Harris PD: Hyperosmolality, acetate and lactate: Dilatory factors during peritoneal dialysis. Kidney Int 20: 397–402, 1981.

    PubMed  CAS  Google Scholar 

  56. Wayland H, Silberberg A: Blood to lymph transport. Microvasc Res 15: 367–374, 1978.

    PubMed  CAS  Google Scholar 

  57. Gosselin RE, Berndt WO: Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol 3: 487–495, 1962.

    CAS  Google Scholar 

  58. Rasio EA: Metabolic control of permeability in isolated mesentery. Am J Physiol 226: 962–968, 1974.

    PubMed  CAS  Google Scholar 

  59. Nagel W, Kuschinsky W: Study of the permeability of the isolated dog mesentery. Eur J Clin Invest 1: 149–154, 1970.

    PubMed  CAS  Google Scholar 

  60. Berndt WO, Gosselin RE: Differential changes in permeability of mesentery to rubidium and phosphate. Am J Physiol 202: 761–767, 1962.

    PubMed  CAS  Google Scholar 

  61. Torres IJ, Litterst CL, Guarine AM: Transport of model compounds across the peritoneal membrane in the rat. Pharmacology 17: 330–340, 1978.

    PubMed  CAS  Google Scholar 

  62. Mason JC, Curry FE, Michel CC: The effects of proteins upon the filtration coefficient of individually perfused frog mesenteric capillaries. Microvasc Res 13: 185–202, 1977.

    PubMed  CAS  Google Scholar 

  63. Turner MR, Clough G, Michel CC: The effects of cationized ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res 25: 205–222, 1983.

    PubMed  CAS  Google Scholar 

  64. Simionescu D, Simionescu M: Differentiated distribution of the cell surface charge on the alveolar-capillary unit. Characteristic paucity of anionic sites on the air-blood barrier. Microvasc Res 25: 85–100, 1983.

    PubMed  CAS  Google Scholar 

  65. Charonis AS, Wissig SL: Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res 25: 265–285, 1983.

    PubMed  CAS  Google Scholar 

  66. Blumberg AL, Denny SE, Marshall GR, Needleman P: Blood vessel-hormone interactions: angiotensin, bradykinin and prostaglandins. Am J Physiol 232(3): H305–H310, 1977.

    PubMed  CAS  Google Scholar 

  67. Hedqvist P: Studies on the effect of prostaglandins E1 and E2 on the sympathetic neuromuscular transmission in some animal tissues. Acta Physiol Scand (Suppl) 345: 1–40, 1970.

    CAS  Google Scholar 

  68. McGrath MA, Shepherd JT: Inhibition of adrenergic neurotransmission in canine vascular smooth muscle by histamine: mediation by H2-receptors. Circ Res 39: 566–573, 1976.

    PubMed  CAS  Google Scholar 

  69. Hedqvist P, Fredholm BB: Effect of adenosine on adrenergic neurotransmission. Prejunctional inhibition and postjunctional enhancement. Naunyn-Schmiedeberg’s Arch Pharmacol 293: 217–223, 1976.

    CAS  Google Scholar 

  70. Wakade AR, Wakade TD: Inhibition of noradrenaline release by adenosine. J Physiol (London) 282: 35–49, 1978.

    CAS  Google Scholar 

  71. Shepherd JT, Vanhoutte PM: Veins and their control. Saunders WB, Philadelphia 1975.

    Google Scholar 

  72. Starke K, Schumann HJ: Interactions of angiotensin, phenoxybenzamine, and propranolol on noradrenaline release during sympathetic nerve stimulation. Eur J Pharmacol 18: 27–30, 1972.

    PubMed  CAS  Google Scholar 

  73. Malik KU, Nasjletti A: Attenuation by bradykinin of adrenergically-induced vasoconstriction in the isolated perfused kidney of the rabbit: Relationship to prostaglandin synthesis. Br J Pharmacol 67: 269–275, 1979.

    PubMed  CAS  Google Scholar 

  74. Heitz DC, Brody MJ: Possible mechanisms of histamine release during active vasodilation. Am J Physiol 28: 1351–1357, 1975.

    Google Scholar 

  75. Davies BN, Horton EW, Withrington PG: The occurence of prostaglandin E2 in splenic venous blood of the dog following splenic nerve stimulation. Br J Pharmacol Chemother 32: 127–135, 1968.

    PubMed  CAS  Google Scholar 

  76. Hare HG, Valtin H, Gosselin RE: Effect of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 145: 122–129, 1964.

    PubMed  CAS  Google Scholar 

  77. Brown EA, Kliger AS, Goffinet J, Finkelstein FO: Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in the rat. Kidney Int 13: 271–277, 1978.

    PubMed  CAS  Google Scholar 

  78. Nolph KD, Ghods AJ, Van Stone J, Brown PA: The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 22: 586–594, 1976.

    PubMed  CAS  Google Scholar 

  79. Powlik W, Tague LL, Tepperman BL, Miller TA, Jacobson ED: Histamine H1 and H2-receptor vasodilation of canine intestinal circulation. Am J Physiol 233: E219–E224, 1977.

    Google Scholar 

  80. Guth PH, Smith E: Histamine receptors in mesenteric circulaton of the cat and rat. Am J Physiol 234: E370–E374, 1978.

    PubMed  CAS  Google Scholar 

  81. Guth PH, Moler TL, Smith E: H1 and H2 histamine receptors in rat gastric submucosal arterioles. Microvasc Res 19: 320–328, 1980.

    PubMed  CAS  Google Scholar 

  82. Miller FN, Wiegman DL, Joshua IG, Nolph KD, Rubin J: Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exptl Biol Med 161: 605–608, 1979.

    CAS  Google Scholar 

  83. Messina EJ, Weiner R, Kaley G: Microcirculatory effects of prostaglandins E1 E2 and A1 in the rat mesentery and cremaster muscle. Microvasc Res 8: 77–89, 1974.

    PubMed  CAS  Google Scholar 

  84. Faber JE, Harris PD, Joshua IG: Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle. Am J Physiol 243: H51–H60, 1982.

    PubMed  CAS  Google Scholar 

  85. Altura BM: Pharmacology of venular smooth muscle: New Insights. Microvasc Res 16: 91–117, 1978.

    PubMed  CAS  Google Scholar 

  86. Altura BM, Zweifach BW: Evidence for beta receptors in the rat mesenteric mirovasculature. J Pharmacol Exp Ther 150: 23–25, 1965.

    PubMed  CAS  Google Scholar 

  87. Gillespie JS, Rae RM: Constrictor and complicance responses of some arteries to nerve or drug stimulation. J Physiol (London) 223: 109–130, 1972.

    CAS  Google Scholar 

  88. Altura BM: Chemica and humoral regulation of blood flow through the precapillary sphincter. Microvasc Res 3: 361–384, 1971.

    Google Scholar 

  89. Hirszel P, Lasrich M, Maher JF: Augmentation of peritoneal mass transport by dopamine. J Lab Clin Med 94: 747–754, 1979.

    PubMed  CAS  Google Scholar 

  90. Maher JF, Hirszel P, Lasrich M: Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 16: 130–136, 1979.

    PubMed  CAS  Google Scholar 

  91. Longnecker DE, Creasy RA, Ross DC: A microvascular site of action of sodium nitroprusside in striated muscle of the rat. Anesthesiology 50: 111–117, 1979.

    PubMed  CAS  Google Scholar 

  92. Raymond RM, Jandhyala BS, Grega GJ: The interrelationship among bradykinin, various vasoactive substances, and macromolecular permeability in the canine forelimb. Microvasc Res 19: 329–337, 1980.

    PubMed  CAS  Google Scholar 

  93. Persson CGA, Erjefält I: Terbutaline and adrenaline inhibit leakage of fluid and protein in guinea-pig lung. Eur J Pharmacol 55: 199–201, 1979.

    PubMed  CAS  Google Scholar 

  94. Marciniak DL, Dobbins DE, Maciejko JJ, Scott JB, Haddy FJ, Grega GJ: Antagonism of histamine edema formation by catecholamines. Am J Physiol 234(2): H180–H185, 1978.

    PubMed  CAS  Google Scholar 

  95. Joyner WL, Svensjö E, Arfors KE: Simultaneous measurements of macromolecular leakage and arteriolar blood flow as altered by PGE1 and β2-receptor stimulant in the hamster cheek pouch. Microvasc Res 18: 301–310, 1979.

    PubMed  CAS  Google Scholar 

  96. Svensjö E, Arfors KE, Raymond RM, Grega GJ: Morphological and physiological correlation of bradykinin-induced macromolecular efflux. Am J Physiol 236: H600–H606, 1979.

    PubMed  Google Scholar 

  97. Baker CH: Nonhemodynamic effects of histamine on gracilis muscle capillary permeability. J Pharmacol Exp Ther 211: 672–677, 1979.

    PubMed  CAS  Google Scholar 

  98. Miller FN, Joshua IG, Anderson GL: Quantation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 24: 56–67, 1982.

    PubMed  CAS  Google Scholar 

  99. Anderson GL, Miller FN, Xiu RJ: Inhibition of histamine-induced protein leakage in rat skeletal muscle by blockade of prostaglandin synthesis. Microvasc Res 28: 51–61, 1984.

    PubMed  CAS  Google Scholar 

  100. Hirszel P, Maher JF, Chamberlin M: Augmented peritoneal mass transport with intraperitoneal nitroprusside. J Dial 2: 131–142, 1978.

    PubMed  CAS  Google Scholar 

  101. Miller FN, Joshua IG, Harris PD, Wiegman DL, Jauchem JR: Peritoneal dialysis solutions and the microcirculation. In: A Trevino-Becerra, FST Boen (eds). Today’s Art of Peritoneal Dialysis. S Karger, Basel, Contrib Nephrol 17: 51–58, 1979.

    Google Scholar 

  102. Svensjö E, Foltz R, Grega G: The morphological basis of the antagonism of the histamine-induced efflex of macromolecules produced by catecholamines in the cheek pouch of hamsters. Microvasc Res 21: 259, 1981.

    Google Scholar 

  103. Svensjö E, Adamski SW, Su K, Grega GJ: Quantitative physiological and morphological aspects of microvascular permeability changes induced by histamine and inhibited by terbutaline. Acta Physiol. Scand. 116: 265–273, 1982.

    Google Scholar 

  104. Joyner WL: Effect of prostaglandins on macromolecular transport from blood to lymph in the dog. Am J Physiol 232: H690–H696, 1977.

    PubMed  CAS  Google Scholar 

  105. Amelang E, Prasad CM, Raymond RM, Grega GJ: Interactions among inflammatory mediators on edema formation on the canine forelimb. Circ Res 49: 298–306, 1981.

    PubMed  CAS  Google Scholar 

  106. Alhenc-Gelas F, Tsai SJ, Callahan KS, Campbell WB, Johnson AR: Stimulation of prostaglandin formation by vasoactive mediators in cultured human endothelial cells. Prostaglandins 24: 723–742, 1982.

    PubMed  CAS  Google Scholar 

  107. Juan H, Sametz W: Histamine-induced release of arachidonic acid and of prostaglandins in the peripheral vascular bed. Naunyn-Schmiedeberg’s Arch Pharmacol 314: 183–190, 1980.

    CAS  Google Scholar 

  108. Huttner I, More RH, Rona G: Fine structural evidence of specific mechanism for increased endothelial permeability in experimental hypertension. Am J Pathol 61: 395–417, 1970.

    PubMed  CAS  Google Scholar 

  109. Rioux F, Quinon R, Regoli D: The role of prostaglandins in hypertension. I The release of prostaglandins by aorta strips of renal, doca-salt and spontaneously hypertensive rats. Can J Physiol Pharmacol 53: 673–677, 1977.

    Google Scholar 

  110. Pugsley DJ, Beilin L, Peto R: Renal prostaglandin synthesis in the Goldblatt hypertensive rat. Circ Res (Suppl 1) 36-37: 81-88, 1975.

    Google Scholar 

  111. Romero JC, Strong CG: The effect of indomethacin blockade of prostaglandin synthesis on blood pressure of normal rabbits and rabbits with renovascular hypertension. Circ Res 40: 35–41, 1977.

    PubMed  CAS  Google Scholar 

  112. Faber JE, Harris PD, Miller FN: Microvascular sensitivity to PGE2 and PGI2 in skeletal muscle of decerebrate rat. Am J Physiol 243: H844–H851, 1982.

    PubMed  CAS  Google Scholar 

  113. Guth PH, Moler TL: The role of endogenous prostanoids in the response of the rat gastric microcirculation to vasoactive agents. Microvasc Res 23: 336–346, 1982.

    PubMed  CAS  Google Scholar 

  114. Van de Voorde J, Leusen I: Influence of prostaglandin-synthesis inhibitors on carbachol-and histamine-induced vasodilation in perfused rat hindquarters. Pfluegers Arch 397: 290–294, 1983.

    Google Scholar 

  115. Juan H: Role of calcium in prostaglandin E release induced by bradykinin and the ionophore A 23187. Naunyn-Schmiedeberg’s Arch Pharmacol 307: 177–183, 1979.

    CAS  Google Scholar 

  116. Mayhan WG, Gilmore JP, Joyner WL: The effect of a calcium blocker (Verapamil) on the characterization of microvascular leaky sites in the hamster cheek pouch. Microvasc Res 3: 247, 1983.

    Google Scholar 

  117. Miller FN, Joshua IG, Harris PD: Inhibition of histamine-induced protein leak during renovascular hypertension by the calcium entry blocker verapamil. The Pharmacologist 25: 239, 1983.

    Google Scholar 

  118. Majno GS, Shea SM, Leventhal M: Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol 42: 647–672, 1969.

    PubMed  CAS  Google Scholar 

  119. Svensjö E: Bradykinin and prostaglandin E1, E2 and F2-induced macromolecular leakage in the hamster cheek pouch. Prostaglandins and Med 1: 397–410, 1978.

    Google Scholar 

  120. Granger DN, Ulrich M, Perry MA, Kvietys PR: Peritoneal dialysis solutions and feline splanchnic blood flow. Clin Exp Pharmacol Physiol (in press).

    Google Scholar 

  121. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J: Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 93: 246–256, 1979.

    PubMed  CAS  Google Scholar 

  122. Zelman A, Parsons R, Anzola E, Whittman P: Augmentation of peritoneal dialysis efficiency with programmed hyper-hypoosmotic dialysates. In: BB Mackey (ed). Eleventh Annual Contractor’s Conference. Washington, DC, 1978, pp 47-50.

    Google Scholar 

  123. Henderson LW, Nolph KD: Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 48: 992–1001, 1969.

    PubMed  CAS  Google Scholar 

  124. Mellander S, Johansson B, Gray S, Jonsson O, Lundvall J, Ljung B: The effects of hyperosomolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica 4: 310–322, 1967.

    PubMed  CAS  Google Scholar 

  125. Arvill A, Johansson B, Jonsson O: Effects of hyperosmolarity on the volume of vascular smooth muscle cells and the relation between cell volume and muscle activity. Acta Physiol Scand 75: 484–495, 1969.

    PubMed  CAS  Google Scholar 

  126. Duling BR, Staples E: Microvascular effects of hypertonic solutions in the hamster. Microvasc Res 11: 51–56, 1976.

    PubMed  CAS  Google Scholar 

  127. Gazitúa S, Scott JB, Swindall B, Haddy FJ: Resistance responses to local changes in plasma osmolality in three vascular beds. Am J Physiol 220: 384–391, 1971.

    PubMed  Google Scholar 

  128. Overbeck HW, Molnar JI, Haddy FJ: Resistance to blood flow through the vascular bed of the dog forelimb: Local effects of sodium, potassium, calcium, magnesium, acetate, hypertonicity and hypotonicity. Am J Cardiol 8: 533–541, 1961.

    PubMed  CAS  Google Scholar 

  129. Levine SE, Granger DN, Brace RA, Taylor AE: Effect of hyperosmolality on vascular resistance and lymph flow in the cat ileum. Am J Physiol 234: H14–H20, 1978.

    PubMed  CAS  Google Scholar 

  130. Jauchem JR, Miller FN, Wiegman DL, Joshua IG, Harris PD: Interaction of acetate, lactate and osmolality on contraction of mesenteric arteries. Microcirculation 1: 37–54, 1981.

    CAS  Google Scholar 

  131. Krishnamurty VSR, Adams HR, Willerson JT: Paradoxical inhibition of vasoconstrictor and vasodilator responses by hypertonic mannitol in isolated arterial smooth muscle. Eur J Pharmacol 58: 379–388, 1979.

    PubMed  CAS  Google Scholar 

  132. Blair-West JR, McKenzie JS, McKinley MJ: The actions of angiotension II on the isolated portal vein of the rat. Eur J Pharmacol 15: 221–230, 1971.

    PubMed  CAS  Google Scholar 

  133. McKinley MJ, McKenzie JS, Blair-West JR: Effects of maintained osmolarity changes on rat portal vein spontaneous contractions. Am J Physiol 226: 718–723, 1974.

    PubMed  CAS  Google Scholar 

  134. Gazitúa S, Scott JB, Chou CC, Haddy FJ: Effect of osomolarity on canine renal vascular resistance. Am J Physiol 217: 1216–1223, 1969.

    PubMed  Google Scholar 

  135. Renkin EM, Joyner WL, Sloop CH, Watson PD: Influence of venous pressure on plasma-lymph transport in the dog’s paw: Convective and dissipative mechanisms. Microvasc Res 14: 191–204, 1977.

    PubMed  CAS  Google Scholar 

  136. Renkin EM: Transport pathways through capillary endothelium. Microvasc Res 15: 123–136, 1978.

    PubMed  CAS  Google Scholar 

  137. Bell DR, Watson PD, Renkin EM: Exclusion of plasma proteins in interstitium of tissues from the dog hind paw. Am J Physiol 239: H532–H538, 1980.

    PubMed  CAS  Google Scholar 

  138. Miller FN, Nolph KD, Sorkin MI, Gloor HJ: The influence of solution composition on protein loss during peritoneal dialysis. Kidney Int 23: 35–39, 1983.

    PubMed  CAS  Google Scholar 

  139. Copley AL: The physiological significance of the endoendothelial fibrin lining (EEFL) as the critical interface in the ‘vessel-blood organ’ and the importance of in vivo fibrinogenin formation in health and disease. Thromb Res Suppl V: 105-145, 1983.

    Google Scholar 

  140. Nolph KD, Ghods AJ, Brown P, Van Stone J, Miller F, Wiegman D, Harris P: Factors affecting peritoneal dialysis efficiency. Dial Transpl 6: 52–63, 1977.

    Google Scholar 

  141. Harris PD, Longnecker DE, Miller FN, Wiegman DL: Sensitivity of small subcutaneous vessels to altered gases and local pH. Am J Physiol 231(1): 244–251, 1976.

    PubMed  CAS  Google Scholar 

  142. Kontos HA: Role of hypercapnic acidosis in the local regulation of blood flow in skeletal muscle. Circ Res (Suppl 1–28 and 29): 98-105, 1971.

    Google Scholar 

  143. Betz D, Enzenross HG, Vlahov V: Interaction of H+ and Ca++ in the regulation of local pial vascular resistance. Pfluegers Arch 343: 79–88, 1973.

    CAS  Google Scholar 

  144. Duling BR: Changes in microvascular diameter and oxygen tension induced by carbon dioxide. Circ Res 32: 370–376, 1973.

    PubMed  CAS  Google Scholar 

  145. Radwaski D, Dabney JM, Daugherty RM Jr, Haddy FJ, Scott JB: Local effects on CO2 on vascular resistances and weight of the dog forelimb. Am J Physol 222: 439–443, 1972.

    Google Scholar 

  146. Duckies SP, Rayner MD, Nadel JA: Effects of CO2 and pH on drug-induced contractions of airway smooth muscle. J Pharmacol Exp Ther 190: 472–481, 1974.

    Google Scholar 

  147. Wiegman DL, Miller FN, Harris PD: Modification of α-adrenergic responses of small arteries by altered PCO2 and pH. Eur J Pharmacol 57: 307–315, 1979.

    PubMed  CAS  Google Scholar 

  148. Lai YL, Attebery BA, Brown EB Jr: Intracellular adjustments of skeletal muscle, heart, and brain to prolonged hypercapnia. Respir Physiol 19: 115–122, 1973.

    PubMed  CAS  Google Scholar 

  149. Atkinson JM, Rand MJ: Reduction of cardiovascular responses to some sympathomimetic amines during hypercapnia. Eur J Pharmacol 18: 166–173, 1972.

    PubMed  CAS  Google Scholar 

  150. Reynolds RC, Hardman HF: The effect of pH changes and ionization on the action of epinephrine upon the isolated rabbit ileum. Eur J Pharmacol 10: 249–255, 1972.

    Google Scholar 

  151. Miller FN, Wiegman DL, Devaney MJ, Harris PD: Effect of CO2 on the ±-adrenergic receptor: ta control mechanism for tissue blood flow. Microcirculation 1: 259–261, 1976.

    CAS  Google Scholar 

  152. Smiley M, Lawson M, Garlick D: Countercurrent exchange of highly diffusible tracers in skeletal muscle: its absence in the lung. Clinical Expt Pharmacol Physiol 4: 183–196, 1977.

    CAS  Google Scholar 

  153. Landis EM, Pappenheimer JR: Exchange of substances through the capillary walls. In: WF Hamilton, P Dows (eds). Handbook of Physiology: Section 2: Circulation, Vol II. Am Physiol Soc, Washington, DC, 1963, pp 1018-1019.

    Google Scholar 

  154. Wei EP, Thames MD, Kontos HA, Patterns JL Jr: Inhibition of the vasodilator effect of hypercapnic acidosis by hypercalcemia in dogs and rats. Circ Res 35: 890–895, 1974.

    PubMed  CAS  Google Scholar 

  155. Morff RJ, Harris PD, Wiegman DL, Miller FN: Muscle microcirculation: effects of tissue pH, PCO2, and PO2 during systemic hypoxia. Am J Physiol 240: H746–H754, 1981.

    PubMed  CAS  Google Scholar 

  156. Liang CS, Lowenstein JM: Metabolic control of the circulation. Effects of acetate and pyruvate. J Clin Invest 62: 1029–1038, 1978.

    PubMed  CAS  Google Scholar 

  157. Christoffersen GRJ, Skibsted LH: Calcium ion activity in physiological salt solutions: Influence of anions substituted for chloride. Comp Biochem Physiol 52A: 317–322, 1975.

    Google Scholar 

  158. Frohlich ED: Vascular effects of the Krebs intermediate metabolites. Am J Physiol 208: 149–153, 1965.

    PubMed  CAS  Google Scholar 

  159. Hester RK, Weiss GB, Willerson JT: Basis of pH-independent inhibitory effects of lactate in 45Ca movements and responses to KC1 and PGF2 in canine coronary arteries. Circ Res 46: 771–779, 1980.

    PubMed  CAS  Google Scholar 

  160. Federspil G, Zaccaria M, Pedrazzoli S, Zago E, De Palo C, Scandellari C: Effects of sodium dl-lactate on insulin secretion in anesthetized dogs. Diabetes 29: 33–36, 1980.

    PubMed  CAS  Google Scholar 

  161. Peters RA: Mechanism of the toxicity of the active constituent of Dichapetalum cymosum and related compounds. Adv Enzymol Relat Subj Biochem 18: 113–159, 1957.

    PubMed  CAS  Google Scholar 

  162. Frohlich ED: Local effect of adenosine mono-, di-and triphosphate on vessel resistance. Am J Physiol 204: 28–30, 1963.

    PubMed  CAS  Google Scholar 

  163. Haddy FJ, Chou CC, Scott JB, Dabney JM: Intestinal vascular responses to naturally occurring vasoactive substances. Gastroenterology 52: 444–451, 1967.

    PubMed  CAS  Google Scholar 

  164. Granger HJ, Norris CP: Role of adenosine in local control of intestinal circulation in the dog. Circ Res 46: 764–770, 1980.

    PubMed  CAS  Google Scholar 

  165. Burnstock G: Purinergic nerves. Pharmacol Rev 24: 509–581, 1972.

    PubMed  CAS  Google Scholar 

  166. Maher JF, Hirszel P, Lasrich M: An experimental model for study of pharmacologic and hormonal influences of peritoneal dialysis. In: A Trevino-Becerra, FST Boen (eds). Today’s Art of Peritoneal Dialysis. S Krager, Basel, 1979, Contrib Nephrol 17: 131–138, 1979.

    Google Scholar 

  167. Honig CR, Frierson JL: Role of adenosine in exercise vasodilation in dog gracilis membrane. Am J Physiol 238: H703–H715, 1980.

    PubMed  CAS  Google Scholar 

  168. Tabaie HMA, Scott JB, Haddy FJ: Reduction of exercise dilation by theophylline. Proc Soc Exptl Biol Med 154: 93–97, 1977.

    CAS  Google Scholar 

  169. Stafford A: Potentiation of adenosine and the adenine nucleotides by dipyridamole. Br J Pharmacol Chemother 28: 218–227, 1966.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miller, F.N. (1985). The peritoneal microcirculation. In: Nolph, K.D. (eds) Peritoneal dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2560-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2560-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-2562-0

  • Online ISBN: 978-94-017-2560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics