Skip to main content

The Role of Dynamical Regimes of Online Adaptive BN-Robots in Noisy Environments

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2022)

Abstract

A novel online adaptation mechanism has been recently introduced, which is inspired by the phenotypic plasticity property present in biological organisms and which exploits the intrinsic computational capabilities of the Boolean network (BN) controlling the robot. In these robots, the BN is coupled with sensors and actuators and plays the role of the control system. The coupling is dynamically changed so as to increase a utility function. Recent results have shown that this mechanism can yield robots accomplishing tasks of a different nature and that, in general, critical networks attain the best performance compared to the other ones.

An analysis of this mechanism in noisy environments is needed to assess its performance in more realistic scenarios and to reduce the so-called reality gap. This work aims precisely to start investigating this question and to generalise the previously attained result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonani, M., et al.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 October 2010, pp. 4187–4193. Taipei, Taiwan. IEEE (2010)

    Google Scholar 

  2. Braccini, M., Roli, A., Kauffman, S.: Online adaptation in robots as biological development provides phenotypic plasticity. arXiv preprint arXiv:2006.02367 (2020). To be published in Proceedings of WIVACE 2021, LNCS Series, Springer

  3. Braccini, M., Roli, A., Barbieri, E., Kauffman, S.A.: On the criticality of adaptive Boolean network robots. Entropy 24(10), 1368 (2022). https://doi.org/10.3390/e24101368

    Article  Google Scholar 

  4. Braccini, M., Roli, A., Villani, M., Serra, R.: Dynamical properties and path dependence in a gene-network model of cell differentiation. Soft. Comput. 25(9), 6775–6787 (2020). https://doi.org/10.1007/s00500-020-05354-0

    Article  Google Scholar 

  5. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1986)

    Google Scholar 

  6. Cariani, P.: To evolve an ear. Epistemological implications of Gordon Pask’s electrochemical devices. Syst. Res. 10(3), 19–33 (1993)

    Article  Google Scholar 

  7. Fusco, G., Minelli, A.: Phenotypic plasticity in development and evolution: facts and concepts. Philos. Trans. R. Soc. B 365, 547–556 (2010)

    Article  Google Scholar 

  8. Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94(128701), 1–4 (2005)

    Google Scholar 

  9. Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. In: Seminars in Cell and Developmental Biology, vol. 20, pp. 869–876. Elsevier (2009)

    Google Scholar 

  10. Kauffman, S.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  11. Kelly, S., Panhuis, T., Stoehr, A.: Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr. Physiol. 2(2), 1417–1439 (2011)

    Google Scholar 

  12. Kolchinsky, A., Wolpert, D.: Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus 8(6), 20180041 (2018)

    Article  Google Scholar 

  13. Luque, B., Solé, R.: Phase transitions in random networks: simple analytic determination of critical points. Phys. Rev. E 55(1), 257 (1997)

    Article  Google Scholar 

  14. Montagna, S., Braccini, M., Roli, A.: The impact of self-loops on Boolean networks attractor landscape and implications for cell differentiation modelling. IEEE ACM Trans. Comput. Biol. Bioinform. 18(6), 2702–2713 (2021). https://doi.org/10.1109/TCBB.2020.2968310

    Article  Google Scholar 

  15. Pinciroli, C., et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  16. Roli, A., Villani, M., Serra, R., Benedettini, S., Pinciroli, C., Birattari, M.: Dynamical properties of artificially evolved Boolean network robots. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds.) AI*IA 2015. LNCS (LNAI), vol. 9336, pp. 45–57. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24309-2_4

    Chapter  Google Scholar 

  17. Roli, A., Benedettini, S., Birattari, M., Pinciroli, C., Serra, R., Villani, M.: A preliminary study on BN-robots’ dynamics. In: Proceedings of the Italian Workshop on Artificial Life and Evolutionary Computation (WIVACE 2012), pp. 1–4 (2012)

    Google Scholar 

  18. Roli, A., Braccini, M.: Attractor landscape: a bridge between robotics and synthetic biology. Complex Syst. 27, 229–248 (2018). https://doi.org/10.25088/ComplexSystems

  19. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of Boolean network robots. In: Di Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 43–52. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_5

    Chapter  Google Scholar 

  20. Serra, R., Villani, M., Graudenzi, A., Kauffman, S.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246(3), 449–460 (2007). https://doi.org/10.1016/j.jtbi.2007.01.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Villani, M., Barbieri, A., Serra, R.: A dynamical model of genetic networks for cell differentiation. PLoS ONE 6(3), e17703 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Braccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braccini, M., Barbieri, E., Roli, A. (2023). The Role of Dynamical Regimes of Online Adaptive BN-Robots in Noisy Environments. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics