Skip to main content

Dynamical Properties of Artificially Evolved Boolean Network Robots

  • Conference paper
  • First Online:
AI*IA 2015 Advances in Artificial Intelligence (AI*IA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9336))

Included in the following conference series:

Abstract

In this work we investigate the dynamical properties of the Boolean networks (BN) that control a robot performing a composite task. Initially, the robot must perform phototaxis, i.e. move towards a light source located in the environment; upon perceiving a sharp sound, the robot must switch to antiphototaxis, i.e. move away from the light source. The network controlling the robot is subject to an adaptive walk and the process is subdivided in two sequential phases: in the first phase, the learning feedback is an evaluation of the robot’s performance in achieving only phototaxis; in the second phase, the learning feedback is composed of a performance measure accounting for both phototaxis and antiphototaxis. In this way, it is possible to study the properties of the evolution of the robot when its behaviour is adapted to a new operational requirement. We analyse the trajectories followed by the BNs in the state space and find that the best performing BNs (i.e. those able to maintaining the previous learned behaviour while adapting to the new task) are characterised by generalisation capabilities and the emergence of simple behaviours that are dynamically combined to attain the global task. In addition, we also observe a further remarkable property: the complexity of the best performing BNs increases during evolution. This result may provide useful indications for improving the automatic design of robot controllers and it may also help shed light on the relation and interplay among robustness, evolvability and complexity in evolving systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldana, M., Balleza, E., Kauffman, S., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. Journal of Theoretical Biology 245, 433–448 (2007)

    Article  MathSciNet  Google Scholar 

  2. Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation 16, 1413–1436 (2004)

    Article  MATH  Google Scholar 

  3. Crutchfield, J.: The calculi of emergence: Computation, dynamics, and induction. Physica D 75, 11–54 (1994)

    Article  MATH  Google Scholar 

  4. Crutchfield, J., Young, K.: Computation at the onset of chaos. In: Complexity, Entropy, and Physics of Information. Addison Wesley (1990)

    Google Scholar 

  5. Edlund, J., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated information increases with fitness in the evolution of animats. PLOS Computational Biology 7(10), e1002236:1–e1002236:13 (2011)

    Article  MathSciNet  Google Scholar 

  6. Garattoni, L., Roli, A., Amaducci, M., Pinciroli, C., Birattari, M.: Boolean network robotics as an intermediate step in the synthesis of finite state machines for robot control. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances in Artificial Life, ECAL 2013, pp. 372–378. The MIT Press (2013)

    Google Scholar 

  7. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2(1), 44–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grassberger, P.: Randomness, information, and complexity, August 2012. arXiv:1208.3459

  9. Hordijk, W.: The EvCA project: A brief history. Complexity 18, 15–19 (2013)

    Article  Google Scholar 

  10. Joshi, N., Tononi, G., Koch, C.: The minimal complexity of adapting agents increases with fitness. PLOS Computational Biology 9(7), e1003111:1–e1003111:10 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, UK (1993)

    Google Scholar 

  12. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nature Physics 2, 348–351 (2006)

    Article  Google Scholar 

  13. Langton, C.: Computation at the edge of chaos: Phase transitions and emergent computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  14. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks 20, 323–334 (2007)

    Article  MATH  Google Scholar 

  15. Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity. Physics Letters A 209, 321–326 (1995)

    Article  Google Scholar 

  16. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65 (2009)

    Google Scholar 

  17. Nykter, M., Price, N., Aldana, M., Ramsey, S., Kauffman, S., Hood, L., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrophage exhibit criticality. In: Proceedings of the National Academy of Sciences, USA, vol. 105, pp. 1897–1900 (2008)

    Google Scholar 

  18. Packard, N.: Adaptation toward the edge of chaos. In: Dynamic Patterns in Complex Systems, pp. 293–301 (1988)

    Google Scholar 

  19. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L., Dorigo, M.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Swarm Intelligence 6(4), 271–295 (2012)

    Article  Google Scholar 

  20. Prokopenko, M., Boschetti, F., Ryan, A.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ribeiro, A., Kauffman, S., Lloyd-Price, J., Samuelsson, B., Socolar, J.: Mutual information in random Boolean models of regulatory networks. Physical Review E 77, 011901:1–011901:10 (2008)

    MathSciNet  Google Scholar 

  22. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of boolean network robots. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 43–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Roli, A., Villani, M., Serra, R., Garattoni, L., Pinciroli, C., Birattari, M.: Identification of dynamical structures in artificial brains: an analysis of boolean network controlled robots. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 324–335. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Serra, R., Villani, M.: Modelling bacterial degradation of organic compounds with genetic networks. Journal of Theoretical Biology 189(1), 107–119 (1997)

    Article  Google Scholar 

  25. Serra, R., Villani, M., Barbieri, A., Kauffman, S., Colacci, A.: On the dynamics of random Boolean networks subject to noise: Attractors, ergodic sets and cell types. Journal of Theoretical Biology 265(2), 185–193 (2010)

    Article  MathSciNet  Google Scholar 

  26. Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. Journal of Theoretical Biology 227, 149–157 (2004)

    Article  MathSciNet  Google Scholar 

  27. Shalizi, C.: Methods and techniques of complex systems science: An overview, March 2006. arXiv:nlin/0307015

  28. Shmulevich, I., Dougherty, E.: Probabilistic Boolean Networks: The Modeling and Control of Gene Regulatory Networks. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  29. Shmulevich, I., Kauffman, S., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. PNAS 102, 13439–13444 (2005)

    Article  Google Scholar 

  30. Strogatz, S.: Nonlinear dynamics and chaos. Perseus Books Publishing (1994)

    Google Scholar 

  31. Villani, M., Serra, R.: On the dynamical properties of a model of cell differentiation. EURASIP Journal on Bioinformatics and Systems Biology 4, 1–8 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Roli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Roli, A., Villani, M., Serra, R., Benedettini, S., Pinciroli, C., Birattari, M. (2015). Dynamical Properties of Artificially Evolved Boolean Network Robots. In: Gavanelli, M., Lamma, E., Riguzzi, F. (eds) AI*IA 2015 Advances in Artificial Intelligence. AI*IA 2015. Lecture Notes in Computer Science(), vol 9336. Springer, Cham. https://doi.org/10.1007/978-3-319-24309-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24309-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24308-5

  • Online ISBN: 978-3-319-24309-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics