Skip to main content

Exact Diagonalization Techniques for Quantum Spin Systems

  • Chapter
  • First Online:
Computational Modelling of Molecular Nanomagnets

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 34))

  • 389 Accesses

Abstract

The essence of quantum magnetism lies in correlated many-body states. They determine the physical properties beyond paramagnetism. Even constructions as simple as singlets or triplets cannot be understood without the mathematical concept of superpositions. This is even more evident if time evolution of quantum states and phenomena such as quantum coherence are considered. The major approach to assess correlated many-body states in quantum magnetism of molecules is exact diagonalization of the many-body Hamiltonian describing the physical system. Symmetries are of great help when tackling the numerical task of matrix diagonalization since they allow to decompose a problem of large Hilbert space dimension into a number of smaller problems. This approach will be presented first. It rests on the identification of the available symmetries—e.g., U(1), SU(2), as well as point groups—and their application. However, the applicability of exact diagonalization is limited by the exponential growth of the Hilbert space of the spin system with the number of spins: \(\dim \left( {\mathcal{H}} \right) = \mathop \prod \nolimits_{i} \left( {2 s_{i} + 1} \right)\). Nowadays, complex Hermitian matrices of a linear dimension of about 100,000 can be completely diagonalized on supercomputers which limits the number of spins depending on their size \(s_{i}\) to just a few. I will therefore present a very accurate approximation to exact diagonalization that rests on Lanczos procedures and the concept of typicality. The most popular version, the finite-temperature Lanczos method, allows to evaluate low-energy spectroscopic data, thermal averages as well as time evolutions for systems with Hilbert space dimensions of up to about 1011. Hands-on experience and examples will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blundell SJ (2007) Molecular magnets. Contemp Phys 48:275

    Article  CAS  Google Scholar 

  2. Schnack J (2019) Large magnetic molecules and what we learn from them. Contemp Phys 60:127

    Article  Google Scholar 

  3. Bencini A, Gatteschi D (1990) Electron paramagnetic resonance of exchange coupled systems. Berlin, Heidelberg

    Google Scholar 

  4. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets, mesoscopic physics and nanotechnology. Oxford

    Google Scholar 

  5. MacDonald AH, Girvin SM, Yoshioka D (1988) t/U expansion for the Hubbard model. Phys Rev B 37:9753

    Article  CAS  Google Scholar 

  6. Boca R (1999) Theoretical foundations of molecular magnetism, current methods in inorganic chemistry, vol 1. Amsterdam

    Google Scholar 

  7. Chiesa A, Carretta S, Santini P, Amoretti G, Pavarini E (2013) Many-body models for molecular nanomagnets. Phys Rev Lett 110:157204

    Article  CAS  PubMed  Google Scholar 

  8. Tsukerblat B (2008) Group-theoretical approaches in molecular magnetism: metal clusters. Inorg Chim Acta 361:3746

    Article  CAS  Google Scholar 

  9. Furrer A, Waldmann O (2013) Magnetic cluster excitations. Rev Mod Phys 85:367

    Article  CAS  Google Scholar 

  10. Hoeke V, Heidemeier M, Krickemeyer E, Stammler A, Bögge H, Schnack J, Postnikov A, Glaser T (2012) Environmental influence on the single-molecule magnet behavior of [MnIII6CrIII]3+: molecular symmetry versus solid-state effects. Inorg Chem 51:10929. Mukherjee C, Hoeke V, Stammler A, Bögge H, Schnack J, Glaser T (2014) Switching from antiferromagnetic to ferromagnetic coupling in heptanuclear [Mt6Mc]n+ complexes by going from an achiral to a chiral triplesalen ligand. Dalton Trans 43:9690 (2014). Glaser T, Hoeke V, Gieb K, Schnack J, Schröder C, Müller P (2015) Quantum tunneling of the magnetization in [MnIIIM]3+ (M=CrIII, MnIII) SMMs: impact of molecular and crystal symmetry. Coord Chem Rev 261:289–290. Lippert K-A, Mukherjee C, Broschinski J-P, Lippert Y, Walleck S, Stammler A, Bögge H, Schnack J, Glaser T (2017) Suppression of magnetic quantum tunneling in a chiral single-molecule magnet by ferromagnetic interactions. Inorg Chem 56:15119. Venne J-P, Feldscher B, Walleck S, Stammler A, Bögge H, Schnack J, Glaser T (2019) Rational improvement of single-molecule magnets by enforcing ferromagnetic interactions. Chem Eur J 25:4992. Oldengott JC, Schnack J, Glaser T (2020) Optimization of single-molecule magnets by suppression of quantum tunneling of the magnetization. Eur J Inorg Chem 2020:3222

    Google Scholar 

  11. Lebedev VI, Laikov DN (1999) Quadrature formula for the sphere of 131-th algebraic order of accuracy. Dokl Akad Nauk 366:741. Schnack J (2009) Magnetic response of magnetic molecules with non-collinear local d-tensors. Condens Matter Phys 12:323

    Google Scholar 

  12. Schnack J, Hage P, Schmidt H-J (2008) Efficient implementation of the Lanczos method for magnetic systems. J Comput Phys 227:4512

    Article  Google Scholar 

  13. Bärwinkel K, Schmidt H-J, Schnack J (2000) Structure and relevant dimension of the Heisenberg model and applications to spin rings. J Magn Magn Mater 212:240. Bärwinkel K, Schmidt H-J, Schnack J (2000) Ground state properties of antiferromagnetic Heisenberg spin rings. J Magn Magn Mater 220:227

    Google Scholar 

  14. Bärwinkel K, Hage P, Schmidt H-J, Schnack J (2003) Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings. Phys Rev B 68:054422

    Article  Google Scholar 

  15. des Cloizeaux J, Pearson JJ (1962) Spin-wave spectrum of the antiferromagnetic linear chain. Phys Rev 128:2131. Faddeev L, Takhtajan L (1981) What is the spin of a spin wave? Phys Lett A 85:375. Enderle M, Fåk B, Mikeska H-J, Kremer RK, Prokofiev A, Assmus W (2010) Two-spinon and four-spinon continuum in a frustrated ferromagnetic spin-1/2 chain. Phys Rev Lett 104:237207

    Google Scholar 

  16. Tsukerblat BS (2006) Group theory in chemistry and spectroscopy: a simple guide to advanced usage, 2nd edn. Mineola, New York. Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS (1999) High-nuclearity magnetic clusters: Generalized spin Hamiltonian and its use for the calculation of the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra. Inorg Chem 38:6081

    Google Scholar 

  17. Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS (2001) MAGPACK1 a package to calculate the energy levels, bulk magnetic properties, and inelastic neutron scattering spectra of high nuclearity spin clusters. J Comp Chem 22:985

    Article  CAS  Google Scholar 

  18. http://www.nfchilton.com/phi.html

  19. Gatteschi D, Pardi L (1993) Magnetic properties of high-nuclearity spin clusters—a fast and efficient procedure for the calculation of the energy-levels. Gazz Chim Ital 123:231

    CAS  Google Scholar 

  20. Waldmann O (2000) Symmetry and energy spectrum of high-nuclearity spin clusters. Phys Rev B 61:6138

    Article  CAS  Google Scholar 

  21. Schnalle R, Schnack J (2010) Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries. Int Rev Phys Chem 29:403

    Article  CAS  Google Scholar 

  22. Taft KL, Delfs CD, Papaefthymiou GC, Foner S, Gatteschi D, Lippard SJ (1994) [Fe(OMe)2(O2CCH2Cl)]10, a molecular ferric wheel. J Am Chem Soc 116:823

    Article  CAS  Google Scholar 

  23. Heitmann T, Schnack J (2019) Combined use of translational and spin-rotational invariance for spin systems. Phys Rev B 99:134405

    Article  CAS  Google Scholar 

  24. Heitmann T (2018) Numerical exact diagonalization of heisenberg spin rings using cyclic and spin-rotational symmetries. Master thesis. Bielefeld University

    Google Scholar 

  25. Jaklic J, Prelovsek P (1994) Lanczos method for the calculation of finite-temperature quantities in correlated systems. Phys Rev B 49:5065

    Article  CAS  Google Scholar 

  26. Skilling J (1988) The eigenvalues of mega-dimensional matrices. In: Maximum entropy and Bayesian methods. Kluwer, Dordrecht, pp 455–466. Hutchinson M (1989) A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun Stat Simul Comput 18:1059. Hams A, De Raedt H (2000) Fast algorithm for finding the eigenvalue distribution of very large matrices. Phys Rev E 62:4365

    Google Scholar 

  27. Sugiura S, Shimizu A (2012) Thermal pure quantum states at finite temperature. Phys Rev Lett 108:240401. Sugiura S, Shimizu A (2013) Canonical thermal pure quantum state. Phys Rev Lett 111:010401

    Google Scholar 

  28. Weiße A, Wellein G, Alvermann A, Fehske H (2006) The kernel polynomial method. Rev Mod Phys 78:275

    Article  Google Scholar 

  29. Dagotto E (1994) Correlated electrons in high-temperature superconductors. Rev Mod Phys 66:763. Aichhorn M, Daghofer M, Evertz HG, von der Linden W (2003) Low-temperature Lanczos method for strongly correlated systems. Phys Rev B 67:161103(R). Zerec I, Schmidt B, Thalmeier P (2006) Kondo lattice model studied with the finite temperature Lanczos method. Phys Rev B 73:245108. Schnack J, Wendland O (2010) Properties of highly frustrated magnetic molecules studied by the finite-temperature Lanczos method. Eur Phys J B 78:535. Schnack J, Schulenburg J, Richter J (2018) Magnetism of the N = 42 kagome lattice antiferromagnet. Phys Rev B 98:094423. Prelovsek P, Kokalj J (2018) Finite-temperature properties of the extended Heisenberg model on a triangular lattice. Phys Rev B 98:035107. Morita K, Tohyama T (2020) Finite-temperature properties of the Kitaev-Heisenberg models on kagome and triangular lattices studied by improved finite-temperature Lanczos methods. Phys Rev Res 2:013205

    Google Scholar 

  30. Schnack J, Richter J, Steinigeweg R (2020) Accuracy of the finite-temperature Lanczos method compared to simple typicality-based estimates. Phys Rev Res 2:013186. Schnack J, Richter J, Heitmann T, Richter J, Steinigeweg R (2020) Finite-size scaling of typicality-based estimates. Z Naturforsch A 75:465. Schlüter H, Gayk F, Schmidt H-J, Honecker A, Schnack J (2021) Accuracy of the typicality approach using Chebyshev polynomials. Z Naturforsch A 76:823

    Google Scholar 

  31. Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Nat Bur Stand 45:255

    Article  Google Scholar 

  32. Schnack J (2010) Effects of frustration on magnetic molecules: a survey from Olivier Kahn until today. Dalton Trans 39:4677

    Article  CAS  PubMed  Google Scholar 

  33. Müller A, Sarkar S, Shah SQN, Bögge H, Schmidtmann M, Sarkar S, Kögerler P, Hauptfleisch B, Trautwein A, Schünemann V (1999) Archimedean synthesis and magic numbers: “Sizing” giant molybdenumoxide-based molecular spheres of the Keplerate type. Angew Chem Int Ed 38:3238. Müller A, Luban M, Schröder C, Modler R, Kögerler P, Axenovich M, Schnack J, Canfield PC, Bud’ko S, Harrison N (2001) Classical and quantum magnetism in giant Keplerate magnetic molecules. ChemPhysChem 2:517

    Google Scholar 

  34. Todea AM, Merca A, Bögge H, van Slageren J, Dressel M, Engelhardt L, Luban M, Glaser T, Henry M, Müller A (2007) Extending the (Mo)Mo5}12M30 capsule keplerate sequence: a {Cr30}–cluster of S = 3/2 metal centers with a {Na(H2O)12 encapsulate. Angew Chem Int Ed 46:6106

    Article  CAS  Google Scholar 

  35. Müller A, Todea AM, van Slageren J, Dressel M, Bögge H, Schmidtmann M, Luban M, Engelhardt L, Rusu M (2005) Triangular geometrical and magnetic motifs uniquely linked on a spherical capsule surface. Angew Chem Int Ed 44:3857. Botar B, Kögerler P, Hill CL (2005) [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36–: a molecular quantum spin icosidodecahedron. Chem Commun 3138

    Google Scholar 

  36. Todea AM, Merca A, Bögge H, Glaser T, Engelhardt L, Prozorov R, Luban M, Müller A (2009) Polyoxotungstates now also with pentagonal units: supramolecular chemistry and tuning of magnetic exchange in {(M)M5}12V30 Keplerates (M = Mo, W). Chem Commun 3351

    Google Scholar 

  37. Rousochatzakis I, Läuchli AM, Mila F (2008) Highly frustrated magnetic clusters: the kagome on a sphere. Phys Rev B 77:094420

    Article  Google Scholar 

  38. Baniodeh A, Magnani N, Lan Y, Buth G, Anson CE, Richter J, Affronte M, Schnack J, Powell AK (2018) High spin cycles: topping the spin record for a single molecule verging on quantum criticality. NPJ Quant Mater 3:10

    Google Scholar 

  39. Krivnov VY, Dmitriev DV, Nishimoto S, Drechsler S-L, Richter J (2014) Delta chain with ferromagnetic and antiferromagnetic interactions at the critical point. Phys Rev B 90:014441

    Article  CAS  Google Scholar 

  40. Thuesen CA, Weihe H, Bendix J, Piligkos S, Monsted O (2010) Computationally inexpensive interpretation of magnetic data for finite spin clusters. Dalton Trans 39:4882. Schmidt H-J, Lohmann A, Richter J (2011) Eighth-order high-temperature expansion for general Heisenberg Hamiltonians. Phys Rev B 84:104443

    Google Scholar 

  41. Sandvik AW, Kurkijärvi J (1991) Quantum Monte Carlo simulation method for spin systems. Phys Rev B 43:5950. Sandvik AW (1999), Stochastic series expansion method with operator-loop update. Phys Rev B 59:R14157. Syljuåsen OF, Sandvik AW (2002), Quantum Monte Carlo with directed loops. Phys Rev E 66:046701

    Google Scholar 

  42. Bauer B, Carr LD, Evertz HG, Feiguin A, Freire J, Fuchs S, Gamper L, Gukelberger J, Gull E, Guertler S, Hehn A, Igarashi R, Isakov SV, Koop D, Ma PN, Mates P, Matsuo H, Parcollet O, Pawlowski G, Picon JD, Pollet L, Santos E, Scarola VW, Schollwöck U, Silva C, Surer B, Todo S, Trebst S, Troyer M, Wall ML, Werner P, Wessel S (2011) The ALPS project release 2.0: open source software for strongly correlated systems. J Stat Mech Theor Exp 2011:P05001

    Google Scholar 

  43. Kaemmerer H, Baniodeh A, Peng Y, Moreno-Pineda E, Schulze M, Anson CE, Wernsdorfer W, Schnack J, Powell AK (2020) Inorganic approach to stabilizing nanoscale toroidicity in a tetraicosanuclear Fe18Dy6 single molecule magnet. J Am Chem Soc 142:14838. Liu J-L, Lin W-Q, Chen Y-C, Gomez-Coca S, Aravena D, Ruiz E, Leng J-D, Tong M-L (2013) CuII-GdIII cryogenic magnetic refrigerants and Cu8Dy9 single-molecule magnet generated by in situ reactions of picolinaldehyde and acetylpyridine: experimental and theoretical study. Chem Eur J 19:17567. Rigamonti L, Bridonneau N, Poneti G, Tesi L, Sorace L, Pinkowicz D, Jover J, Ruiz E, Sessoli R, Cornia A (2018) A pseudo-octahedral cobalt(II) complex with bispyrazolylpyridine ligands acting as a zero-field single-molecule magnet with easy axis anisotropy. Chem Eur J 24:8857. Goura J, Bassil BS, Ma X, Rajan A, Moreno-Pineda E, Schnack J, Ibrahim M, Powell AK, Ruben M, Wang J, Ruhlmann L, Kortz U (2021) NiII36-containing 54-tungsto-6-silicate: synthe- sis, structure, magnetic and electrochemical studies. Chem Eur J 27:15081. Alotaibi R, Fowler JM, Lockyer SJ, Timco GA, Collison D, Schnack J, Winpenny REP (2021) The synthesis and characterisation of a molecular sea-serpent: studies of a {Cr24Cu7} chain. Angew Chem Int Ed 60:9489. Tripathi S, Vaidya S, Ahmed N, Andreasen Klahn E, Cao H, Spillecke L, Koo C, Spachmann S, Klingeler R, Rajaraman G, Overgaard J, Shanmugam M (2021) Structure-property correlation in stabilizing axial magnetic anisotropy in octahedral Co(II) complexes. Cell Rep Phys Sci 2:100404

    Google Scholar 

  44. Dmitriev DV, Krivnov VY, Richter J, Schnack J (2019) Thermodynamics of a delta chain with ferromagnetic and antiferromagnetic interactions. Phys Rev B 99:094410. Dmitriev DV, Krivnov VY, Schnack J, Richter J (2020) Exact magnetic properties for classical delta-chains with ferromagnetic and antiferromagnetic interactions in applied magnetic field. Phys Rev B 101:054427. Derzhko O, Schnack J, Dmitriev DV, Krivnov VY, Richter J (2020) Flat-band physics in the spin-1/2 sawtooth chain. Eur Phys J B 93:161

    Google Scholar 

  45. Hanebaum O, Schnack J (2014) Advanced finite-temperature Lanczos method for anisotropic spin systems. Eur Phys J B 87:194

    Article  Google Scholar 

  46. Dagotto E (1994) Correlated electrons in high-temperature superconductors. Rev Mod Phys 66:763. Ummethum J, Nehrkorn J, Mukherjee S, Ivanov NB, Stuiber S, Strässle T, Tregenna-Piggott PLW, Mutka H, Christou G, Waldmann O, Schnack J (2012) Discrete antiferromagnetic spin-wave excitations in the giant ferric wheel Fe18. Phys Rev B 86:104403. Ummethum J, Schnack J, Laeuchli A (2013) Large-scale numerical investigations of the antiferromagnetic Heisenberg icosidodecahedron. J Magn Magn Mater 327:103. Okamoto S, Alvarez G, Dagotto E, Tohyama T (2018) Accuracy of the microcanonical Lanczos method to compute real-frequency dynamical spectral functions of quantum models at finite temperatures. Phys Rev E 97:043308

    Google Scholar 

  47. White SR (1992) Density matrix formulation for quantum renormalization groups. Phys Rev Lett 69:2863. White SR (1993) Density-matrix algorithms for quantum renormalization groups. Phys Rev B 48:10345. Schollwöck U (2011) The density-matrix renormalization group in the age of matrix product states. Ann Phys 326:96

    Google Scholar 

  48. Bauer B, Bravyi S, Motta M, Chan GK-L (2020) Quantum algorithms for quantum chemistry and quantum materials science. Chem Rev 120:12685

    Article  CAS  PubMed  Google Scholar 

  49. Schurkus HF, Chen D, O’Rourke MJ, Cheng H-P, Chan GK-L (2020) Exploring the magnetic properties of the largest single-molecule magnets. J Phys Chem Lett 11:3789. Chen D-T, Helms P, Hale AR, Lee M, Li C, Gray J, Christou G, Zapf VS, Chan GK-L, Cheng H-P (2022) Using hyperoptimized tensor networks and first-principles electronic structure to simulate the experimental properties of the giant Mn84 torus. J Phys Chem Lett 13:2365

    Google Scholar 

Download references

Acknowledgements

I thank the Deutsche Forschungsgemeinschaft DFG for funding (355031190 (FOR 2692); 355031190 (SCHN 615/25-2); 449703145 (SCHN 615/28-1)) and the Leibniz Supercomputing Center in Garching/Germany for supercomputing resources. I would also like to thank all past and present members of my group for a great collaboration and for all the results we achieved. Proofreading by Kilian Irländer and Dennis Westerbeck is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Schnack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schnack, J. (2023). Exact Diagonalization Techniques for Quantum Spin Systems. In: Rajaraman, G. (eds) Computational Modelling of Molecular Nanomagnets. Challenges and Advances in Computational Chemistry and Physics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-031-31038-6_4

Download citation

Publish with us

Policies and ethics