Skip to main content

Computational Modelling of Molecular Nanomagnets

  • Book
  • © 2023

Overview

  • Includes theory on fitting experimental magnetic data
  • Covers theoretical foundations as well as applications
  • Contributions are written by experts in the field

Part of the book series: Challenges and Advances in Computational Chemistry and Physics (COCH, volume 34)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (9 chapters)

Keywords

About this book

This book summarizes the state-of-the-art advances in the area of computational modelling of molecule-based magnets. Nowadays, various computational tools based on DFT, ab initio methods and other techniques are gaining attention in molecular nanomagnets and are successfully used to solve several outstanding problems in this area. This contributed volume discusses the theoretical foundation of the modelling of molecular magnets, starting from fitting the experimental magnetic data of very large molecules to the theory of pseudo-spin Hamiltonian approach and spin-phonon relaxations mechanisms, while it also presents examples of contemporary applications of both transition metal and lanthanide molecular magnets. In addition, the transport characteristics of molecules when placed at an interface and how these assemble on surfaces are also reviewed. This book is a great tool for researchers working in the fields of molecular magnetism and computational/theoretical chemistry and will also benefit graduate students specializing in physical-inorganic chemistry and molecular modelling.
Chapter 6 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Editors and Affiliations

  • of Chemistry, Indian Institute of Technology Bombay, Mumbai, India

    Gopalan Rajaraman

About the editor

Prof. Gopalan Rajaraman is a Institute Chair Professor at the Department of Chemistry of the Indian Institute of Technology Bombay, Mumbai, India. His research focuses on modelling the magnetic properties of molecular magnets, using DFT and ab initio methods. Prof. Rajaraman has published more than 200 research articles in lanthanide magnets, {3d-4f} SMMs, transition metalsingle-ion magnets, polynuclear single molecule magnets etc. Recently his group is utilizing DFT and ab initio methods to predict robust SMMs based on coordination and endohedral fullerene molecules, many of which are proved by experiments.

Bibliographic Information

Publish with us