Skip to main content

Digital Tools to Enhance Interdisciplinary Mathematics Teaching Practices in High School

  • Conference paper
  • First Online:
Higher Education Learning Methodologies and Technologies Online (HELMeTO 2022)

Abstract

Mathematics is a gateway to many scientific and technological fields. Almost every STEM advance and project is expressed in the language of mathematics. Educationally, mathematical development is central. Given the connections, it is reasonable to claim that curricula and pedagogical approaches should fully integrate all aspects of STEM and other domains. For this reason, it is important for teaching and learning to create interdisciplinary approaches that emphasize connections between the various domains while maintaining their own conceptual, procedural, and (epistemological) knowledge bases for each of these domains. To interconnect disciplinary knowledge, guaranteeing balance in curricular learning, it is desirable to promote integrated digital teaching practice. The paper is part of the debate about the possibilities of enhancing the role of mathematics in STEM education through interdisciplinary approaches.

The research questions refer to the type of digital tools and their use to support interdisciplinary approaches in the teaching and learning of technology-related disciplines such as mathematics and physics. This paper describes an interdisciplinary teaching practice format between mathematics and physics using digital tools as relevant mediators of meaning through the diverse representation that can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Report by the Committee on STEM Education of the National Science & Technology Council (2018). https://www.energy.gov/sites/default/files/2019/05/f62/STEM-Education-Strategic-Plan-2018.pdf. Accessed 9 May 2022

  2. Battaglia, O.R., Di Paola, B., Fazio, C.: Unsupervised quantitative methods to analyze student reasoning lines: theoretical aspects and examples. Phys. Rev. Phys. Educ. Res. 15(2), 020112 (2019). https://doi.org/10.1103/PhysRevPhysEducRes.15.020112

    Article  Google Scholar 

  3. Battaglia, O.R., Di Paola, B., Fazio, C.: An unsupervised quantitative method to analyse students’ answering strategies to a questionnaire. In: New Trends in Physics Education Research. pp. 19–46. Nova Science Publishers, NY (2018)

    Google Scholar 

  4. Borba, M.C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., Aguilar, M.S.: Digital technology in mathematics education: research over the last decade. In: Kaiser, G. (ed.) Proceedings of the 13th International Congress on Mathematical Education. IM, pp. 221–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62597-3_14

    Chapter  Google Scholar 

  5. Brooks, J. G., Brooks, M.G.: In search of understanding: the case for constructivist classrooms. 1st edn. ASCD, Virginia, USA (1999)

    Google Scholar 

  6. Buckley, B., Gobert, J., Kindfield, A.C., Horwitz, P., Tinker, R.F., et al.: Model-based teaching and learning with BioLogicaTM: what do they learn? How do they learn? How do we know? J. Sci. Educ. Technol. 13(1), 23–41 (2004)

    Article  Google Scholar 

  7. Clark-Wilson, A., Robutti, O., Thomas, M.: Teaching with digital technology. ZDM Math. Educ. 52(7), 1223–1242 (2020). https://doi.org/10.1007/s11858-020-01196-0

    Article  Google Scholar 

  8. English, L.D.: STEM education K-12: perspectives on integration. Int. J. STEM Educ. 3(1), 1–8 (2016). https://doi.org/10.1186/s40594-016-0036-1

    Article  Google Scholar 

  9. Faggiano, E., Montone, A., Mariotti, M.A.: Synergy between manipulative and digital artefacts: a teaching experiment on axial symmetry at primary school. Int. J. Math. Educ. Sci. Technol. 49(8), 1165–1180 (2018). https://doi.org/10.1080/0020739X.2018.1449908

    Article  Google Scholar 

  10. Frassia, M.G., Serpe, A.: Learning geometry through mathematical modelling: an example with GeoGebra. Turk. Online J. Educ. Techno. November Special Issue (INTE), 411–418 (2017)

    Google Scholar 

  11. Greefrath, G., Hertleif, C., Siller, H.-S.: Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software. ZDM Math. Educ. 50(1–2), 233–244 (2018). https://doi.org/10.1007/s11858-018-0924-6

    Article  Google Scholar 

  12. Hohenwarter, M., Jarvis, D., Lavicza, Z.: Linking geometry, algebra and mathematics teachers: GeoGebra software and the establishment of the international GeoGebra institute. Int. J. Technol. Math. Educ. 16(2), 83–87 (2009)

    Google Scholar 

  13. Kelley, T.R., Knowles, J.G.: A conceptual framework for integrated STEM education. Int. J. STEM Educ. 3(1), 1–11 (2016). https://doi.org/10.1186/s40594-016-0046-z

    Article  Google Scholar 

  14. Koklu, O., Topcu, A.: Effect of Cabri-assisted instruction on secondary school students’ misconceptions about graphs of quadratic functions. Int. J. Math. Educ. Sci. Technol. 43(8), 999–1011 (2012). https://doi.org/10.1080/0020739X.2012.678892

    Article  Google Scholar 

  15. Kramarenko, T.H., Pylypenko, O.S., Zaselskiy, V.I.: Prospects of using the augmented reality application in STEM-based mathematics teaching. Educ. Dimen. 53(1), 199–218 (2019). https://doi.org/10.31812/educdim.v53i1.3843

    Article  Google Scholar 

  16. Margot, K.C., Kettler, T.: Teachers’ perception of STEM integration and education: a systematic literature review. Int. J. STEM Educ. 6(1), 1–16 (2019). https://doi.org/10.1186/s40594-018-0151-2

    Article  Google Scholar 

  17. Marra Barone A.: Interdisciplinarità. Convergenza dei saperi sull’uomo e per l’uomo. Rivista didattica (2006). http://www.rivistadidattica.com/fondamenti/fondamenti2.html. Accessed 19 Oct 2022

  18. Maass, K., Geiger, V., Ariza, M.R., Goos, M.: The role of mathematics in interdisciplinary STEM education. ZDM Math. Educ. 51(6), 869–884 (2019). https://doi.org/10.1007/s11858-019-01100-5

    Article  Google Scholar 

  19. Mishra, P., Koehler, M.J.: Technological pedagogical content knowledge: a framework for integrating technology in teachers’ knowledge. Teach. Coll. Rec. 108(6), 1017–1054 (2006). https://doi.org/10.1111/j.1467-9620.2006.00684.x

    Article  Google Scholar 

  20. Morin, E.: La testa ben fatta. Riforma dell'insegnamento e riforma del pensiero. Raffaello Cortina Editore, Milano (2000)

    Google Scholar 

  21. Morze, N. V., Strutynska, O.V.: Digital transformation in society: key aspects for model development. J. Phys. Conf. Ser. 1946(1), 012021 (2021). https://doi.org/10.1088/1742-6596/1946/1/012021 (IOP Publishing)

  22. Niss, M.A., Højgaard, T. (eds.): Competencies and Mathematical Learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde Universitet. IMFUFA-tekst : i, om og med matematik og fysik No. 485 (2011). http://milne.ruc.dk/ImfufaTekster/. Accessed 19 Oct 2022

  23. Reinhold, F., Hoch, S., Werner, B., Richter-Gebert, J., Reiss, K.: Learning fractions with and without educational technology: what matters for high-achieving and low-achieving students? Learn. Instr. 65, 101264 (2020). https://doi.org/10.1016/j.learninstruc.2019.101264

    Article  Google Scholar 

  24. Sarı, U., Alıcı, M., Şen, Ö.F.: The effect of STEM instruction on attitude, career perception and career interest in a problem-based learning environment and student opinions. Electron. J Res. Sci. Math. Educ. 22(1) (2018)

    Google Scholar 

  25. Serpe, A.: Geometry of design in high school. An example of teaching with Geogebra. In: GomezChova, L., LopezMartinez, A., CandelTorres, I. (eds.) Proceedings 12Th International Technology, Education and Development Conference (INTED2018), Valencia, Spain, pp. 3477–3485. IATED, Valencia (2018). https://doi.org/10.21125/inted.2018.0668

  26. Serpe, A., Frassia, M.G.: Legacy and influence in mathematics and physics with educational technology: a laboratory example. In: New Trends in Physics Education Research, pp. 77–96. Nova Science Publishers, NY (2018)

    Google Scholar 

  27. Serpe, A., Frassia, M.G.: Task mathematical modelling design in a dynamic geometry environment: archimedean spiral’s algorithm. In: Sergeyev, Y.D., Kvasov, D.E. (eds.) NUMTA 2019. LNCS, vol. 11973, pp. 478–491. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39081-5_41

    Chapter  Google Scholar 

  28. Serpe, A., Frassia, M.G.: Promote connections between Mathematics, Drawing and History of Art in high school through a stem approach. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 99(S1), 5 (2021). https://doi.org/10.1478/AAPP.99S1A5

    Article  Google Scholar 

  29. Srikoom, W., Faikhamta, C., Hanuscin, D.: Dimensions of effective stem integrated teaching practice. K-12 STEM Educ. 4(2), 313–330 (2018)

    Google Scholar 

  30. Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., et al.: Integrated STEM education: a systematic review of instructional practices in secondary education. Euro. J. STEM Educ. 3(1), 2 (2018). https://doi.org/10.20897/ejsteme/85525

    Article  Google Scholar 

  31. Gueudet, G., Pepin, B., Trouche, L.: Introduction. In: Trouche, L., Gueudet, G., Pepin, B. (eds.) The ‘Resource’ Approach to Mathematics Education. AME, pp. 1–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20393-1_1

    Chapter  Google Scholar 

  32. Vasquez, J.A.: STEM–beyond the acronym. Educ. Leadersh. 72(4), 10–15 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annarosa Serpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serpe, A. (2023). Digital Tools to Enhance Interdisciplinary Mathematics Teaching Practices in High School. In: Fulantelli, G., Burgos, D., Casalino, G., Cimitile, M., Lo Bosco, G., Taibi, D. (eds) Higher Education Learning Methodologies and Technologies Online. HELMeTO 2022. Communications in Computer and Information Science, vol 1779. Springer, Cham. https://doi.org/10.1007/978-3-031-29800-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29800-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29799-1

  • Online ISBN: 978-3-031-29800-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics