Skip to main content

Task Mathematical Modelling Design in a Dynamic Geometry Environment: Archimedean Spiral’s Algorithm

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

Over the last twenty years, several research studies have recognized that integrating, not simply adding, technology (Computer Algebra System - CAS, Dynamic Geometry Software - DGS, spreadsheets, programming environments, etc.) in the teaching of mathematics helps students develop essential understandings about the nature, use, and limits of the tool and promotes deeper understanding of the mathematical concepts involved. Moreover, the use of technology in the Mathematics curricula can be important in providing the essential support to make mathematical modelling a more accessible mathematical activity for students. This paper presents an example of how technology can play a pivotal role in providing support to explore, represent and resolve tasks of mathematical modelling in the classroom. Specifically, a mathematical modelling task design on the tracing of Archimedean spiral with use of a Dynamic Geometry Environment is shown. The aim is to emphasize the meaning and the semantic value of this rich field of study that combines tangible objects and practical mechanisms with abstract mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dragging in DGE is a powerful dynamic tool to acquire mathematical knowledge. It serves as a kind of interactive amplification tool for leaner to see global behavior via variation.

  2. 2.

    https://www.mathunion.org/activities/international-commission-mathematical-instruction-icmi.

  3. 3.

    GeoGebra was created by Markus Hohenwater and now has been translated into 40 languages. Users all over the world can freely download this software from the official GeoGebra website at http://www.geogebra.org.

  4. 4.

    A concrete image of the Archimedean spiral is the grooves of a vinyl disc, equidistant from each other and separated by a very small constant distant.

  5. 5.

    The mechanical generation of the spiral is described in a plane by a point that moves with a uniform motion along a straight line, while the line rotates in a uniform circular motion around a point.

  6. 6.

    Archimedes, (born c. 287 BCE, Syracuse, Sicily [Italy]-died 212/211 BCE, Syracuse), the most-famous mathematician and inventor in ancient Greece.

References

  1. Arzarello, F., Olivero, F., Paola, D., Robutti, O.: A cognitive analysis of dragging practices in Cabri environments. ZDM 34(3), 66–72 (2002). https://doi.org/10.1007/BF02655708

    Article  Google Scholar 

  2. Barzel, B., Hußmann, T., Leuders, T.: Computer, internet & co im Mathematik-Unterricht. Scriptor-Cornelsen, Berlin (2005)

    Google Scholar 

  3. Bonanno, A., Camarca, M., Sapia, P., Serpe, A.: Archimedes and caustics: a twofold multimedia and experimental approach. In: Paipetis, S., Ceccarelli, M. (eds.) The Genius of Archimedes – 23 Centuries of Influence on Mathematics, Science and Engineering. History of Mechanism and Machine Science, vol. 11, pp. 45–56. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9091-1_4

    Chapter  MATH  Google Scholar 

  4. Burrill, G., Allison, J., Breaux, G., Kastberg, S., Leatham, K., Sanchez, W.: Handheld graphing technology in secondary mathematics: Research findings and implications for classroom practice. Retrieved from the Texas Instruments website (2002). http://education.ti.com/sites/UK/downloads/pdf/References/Done/Burrill,G.%20(2000).pdf

  5. Caldarola, F.: The Sierpinski curve viewed by numerical computations with infinities and infinitesimals. Appl. Math. Comput. 318, 321–328 (2018). https://doi.org/10.1016/j.amc.2017.06.024

    Article  MATH  Google Scholar 

  6. Costabile, F.A., Sapia, P., Serpe, A.: Archimedes in secondary schools: a teaching proposal for the math curriculum. In: Paipetis, S., Ceccarelli, M. (eds.) The Genius of Archimedes – 23 Centuries of Influence on Mathematics, Science and Engineering. History of Mechanism and Machine Science, vol. 11, pp. 479–491. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9091-1_36

    Chapter  Google Scholar 

  7. Dick, T.P., Hollebrands, K.F.: Focus in high school mathematics: Technology to support reasoning and sense making, pp. xi-xvii. National Council of Teachers of Mathematics, Reston, VA (2011)

    Google Scholar 

  8. Drijvers, P., Ball, L., Barzel, B., Heid, M.K., Cao, Y., Maschietto, M.: Uses of Technology in Lower Secondary Mathematics Education. ITS. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33666-4

    Book  Google Scholar 

  9. Duval, R.: Geometry from a cognitive point of view. In: Mammana, C., Villani, V. (eds.) Perspectives on the teaching of geometry for the 21st century, pp. 37–52 (1998)

    Google Scholar 

  10. Enriques, F.: Insegnamento dinamico. Periodico di Matematica Serie IV, vol. I, pp. 6–16 (1921)

    Google Scholar 

  11. Gueudet, G., Trouche, L.: Mathematics teacher education advanced methods: an example in dynamic geometry. ZDM 43(3), 399–411 (2011). https://doi.org/10.1007/s11858-011-0313-x

    Article  Google Scholar 

  12. Frassia, M.G., Serpe, A.: Learning geometry through mathematical modelling: an example with GeoGebra. Turk. Online J. Educ. Technol. 2017(Nov Spec. Issue INTE), 411–418 (2017)

    Google Scholar 

  13. Galbraith, P., Goos, M., Renshaw, P., Geiger, V.: Technology enriched classrooms: some implications for teaching applications and modelling. In: Mathematical modelling in education and culture, pp. 111–125. Woodhead Publishing, Cambridge (2003). https://doi.org/10.1533/9780857099556.3.111

    Chapter  Google Scholar 

  14. Rodríguez Gallegos, R., Quiroz Rivera, S.: Developing modelling competencies through the use of technology. In: Stillman, G.A., Blum, W., Biembengut, M.S. (eds.) Mathematical Modelling in Education Research and Practice. IPTLMM, pp. 443–452. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18272-8_37

    Chapter  Google Scholar 

  15. Greefrath, G., Weigand, H.-G.: Simulieren: Mit Modellen experimentieren. Mathematic lehren 174, 2–6 (2012)

    Google Scholar 

  16. Laborde, C.: The use of new technologies as a vehicle for restructuring teachers’ mathematics. In: Lin, F.L., Cooney, T.J. (eds.) Making sense of mathematics teacher education, pp. 87–109. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-010-0828-0_5

    Chapter  Google Scholar 

  17. Heid, M.K., Blume, G.W.: Research on technology and the teaching and learning of mathematics: Vol. 1. Research syntheses. Information Age, Charlotte (2008)

    Google Scholar 

  18. Hohenwarter, J., Hohenwarter, M., Lavicza, Z.: Introducing dynamic mathematics software to secondary school teachers: the case of GeoGebra. J. Comput. Math. Sci. Teach. 28(2), 135–146 (2009). Retrieved 18 September 2019, from https://www.learntechlib.org/primary/p/30304/

    Google Scholar 

  19. Hollebrands, K.F.: The role of a dynamic software program for geometry in the strategies high school mathematics students employ. J. Res. Math. Educ. 38(2), 164–192 (2007). https://doi.org/10.2307/30034955

    Article  Google Scholar 

  20. Kotenkamp, U., Blessing, A.M., Dohrmann, C., Kreis, Y., Libbrecht, P., Mercat, C.: Interoperable interactive geometry for Europe-First technological and educational results and future challeges of the Intergeo project. In: Durand-Guerrier, V., Soury-Lavergne, S., Arzarello, F. (eds.) Proceeding of the Sixty European Conference on Research on Mathematics Education, pp. 1150–1160 (2010). http://www.inrp.fr/publications/edition-electronique/cerme6/wg7-11-kortenkamp.pdf. Accessed 18 September 2019

  21. Leikin, R., Grossman, D.: Teachers modify geometry problems: from proof to investigation. Educ. Stud. Math. 82, 515–531 (2013). https://doi.org/10.1007/s10649-012-9460-4

    Article  Google Scholar 

  22. Leung, A.: Dynamic geometry and the theory of variation. In: Pateman, N.A., Dougherty, B.J., Zillox, J. (eds.) Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education, Honolulu, USA, vol. 3, pp. 197–204 (2003). https://eric.ed.gov/?id=ED501009. Accessed 18 September 2019

  23. Lopez-Real, F., Leung, A.: Dragging as a conceptual tool in dynamic geometry environments. Int. J. Math. Educ. Sci. Technol. 37(6), 665–679 (2006). https://doi.org/10.1080/00207390600712539

    Article  Google Scholar 

  24. Mandelbrot B.B.: Fractal Geometry of Nature. Freeman, San Francisco (1983). https://doi.org/10.1002/esp.3290080415

    Article  Google Scholar 

  25. Pickover, C.A.: Mathematics and beauty: a sampling of spirals and ‘Strange’ spirals in science. Nat. Art. Leonardo 21(2), 173–181 (1988). https://doi.org/10.5539/jmr.v3n3p3

    Article  MathSciNet  Google Scholar 

  26. Sergeyev, Y.D.: Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons Fractals 33(1), 50–75 (2007). https://doi.org/10.1016/j.chaos.2006.11.001

    Article  Google Scholar 

  27. Sergeyev, Y.D.: Un semplice modo per trattare le grandezze infinite ed infinitesime. Matematica nella Società e nella Cultura: Rivista della Unione Matematica Italiana 8(1), 111–147 (2015)

    Google Scholar 

  28. Sergeyev, Y.D.: The exact (up to infinitesimals) infinite perimeter of the Koch snowflake and its finite area. Commun. Nonlinear Sci. Numer. Simul. 31(1-3), 21–29 (2016). https://doi.org/10.1016/j.cnsns.2015.07.004

    Article  MathSciNet  Google Scholar 

  29. Serpe, A., Frassia, M.G.: legacy and influence in Mathematics and Physics with educational technology: a laboratory example. In: Magazù, S. (ed.) New Trends in Physics Education Research, pp. 77–96. Nova Science Publisher, New York (2018)

    Google Scholar 

  30. Serpe, A.: Geometry of design in high school - an example of teaching with Geogebra. In: GomezChova, L., LopezMartinez, A., CandelTorres, I. (eds.), INTED2018, Proceedings 12th International Technology, Education and Development Conference, Valencia, Spain, pp. 3477–3485 (2018). https://doi.org/10.21125/inted.2018.0668

  31. Sherman, M.: The role of technology in supporting students’ mathematical thinking: Extending the metaphors of amplifier and reorganizer. Contemporary Issues in Technology and Teacher Education, 14 (3), 220–246 (2014). https://www.learntechlib.org/primary/p/130321/. Accessed 18 September 2019

  32. Siller, H.S., Greefrath, G.: Mathematical modelling in class regarding to technology. In: Durand-Guerrier, V., Soury-Lavergne, S., Arzarello, F. (eds.) Proceeding of the Sixty European Conference on Research on Mathematics Education, pp. 1150–1160 (2010). http://www.inrp.fr/editions/cerme6. Accessed 18 September 2019

  33. Weigand, H.G., Weth, T.: Computer im Mathematikunterricht: Neue Wege zu alten Zielen. Spektrum, Heidelberg (2002)

    Google Scholar 

  34. Yerushalmy, M.: Student perceptions of aspects of algebraic function using multiple representation software. J. Comput. Assist. Learn. 7, 42–57 (1991). https://doi.org/10.1111/j.1365-2729.1991.tb00223.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annarosa Serpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serpe, A., Frassia, M.G. (2020). Task Mathematical Modelling Design in a Dynamic Geometry Environment: Archimedean Spiral’s Algorithm. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11973. Springer, Cham. https://doi.org/10.1007/978-3-030-39081-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39081-5_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39080-8

  • Online ISBN: 978-3-030-39081-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics