Skip to main content

GMOs and Human and Environmental Safety

  • Chapter
  • First Online:
Handbook of Bioethical Decisions. Volume I

Part of the book series: Collaborative Bioethics ((CB,volume 2))

  • 634 Accesses

Abstract

The 50-year anniversary of the first 1972 laboratory demonstration of transgenesis resulting in biotechnology (or Biotech for short), provides an opportunity to review this historical development with real evidence. Our evidence-based review shows a field dominated by high, unmet expectations, and underplayed damage and failure. Biotech’s agricultural promises and hopes, as well as its few commercial products, raise questions of centralization and control, erosion of diversity, emergence of new dependencies, and more. But institutions have also changed; in this chapter, we analyze transformations of regulatory frameworks and ask how Biotech forced institutional trajectories. Each application of Biotech carries ethical questions – most of them unresolved and often not even acknowledged – including Biotech-generic questions, as well as those specific to the application. Biotech’s history would demand extensive ethical questioning impossible to do here. Instead, by focusing on a few examples we aim at providing a frame of analysis that may be useful for further application as the extraordinary history of Biotech’s failures, and its counted successes, continues to evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.iol.co.za/saturday-star/news/agriculture-minister-says-no-to-monsantos-drought-tolerant-maize-seed-34072840?fbclid=IwAR21PuKCRWOQCgb-4zBhO7VMai7RISiGfiTHvOF_WFMsU9HLc8DQSnl151Q

  2. 2.

    https://innovation.ox.ac.uk/news/oxford-spinout-oxitec-sold-to-intrexon-corporation-for-160-million/; https://www.prnewswire.com/news-releases/intrexon-to-achieve-175m-cash-goal-appoints-helen-sabzevari-phd-as-new-president-and-ceo-and-will-change-name-to-precigen-to-reflect-healthcare-focus-300980434.html

  3. 3.

    https://www.nature.com/articles/nbt1015-1017/tables/1 Waltz, 2015.

  4. 4.

    https://www.biospace.com/article/intrexon-changes-name-to-precigen-taps-new-ceo/

  5. 5.

    https://synbiobeta.com/from-biotech-to-biotech-meet-serial-entrepreneur-randal-kirk-ceo-intrexon/

  6. 6.

    http://www.genewatch.org/uploads/f03c6d66a9b354535738483c1c3d49e4/Oxitec_GWbrief_Mar15.pdf

References

  • Agfax. (2020). Bt Corn: Phaseout of Most Hybrids Proposed. https://agfax.com/2020/10/01/bt-corn-phaseout-of-most-hybrids-proposed/

  • Albisser Vögeli, G., Burose, F., Wolf, D., & Lips, M. (2011). Wirtschaftlichkeit gentechnisch-veränderter Ackerkulturen in der Schweiz. Mit detaillierter Berücksichtigung möglicher Koexistenz-Kosten. Forschungsanstalt Agroscope Reckenholz-Tänikon ART.

    Google Scholar 

  • Almeida, V. E. S., Friedrich, K., Tygel, A. F., Melgarejo, L., & Carneiro, F. F. (2017). Use of genetically modified crops and pesticides in Brazil: Growing hazards. Ciência & Saúde Coletiva, 22(10), 3333–3339.

    Article  Google Scholar 

  • Aparicio, V. C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P., & Costa, J. L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere, 93(9), 1866–1873.

    Article  Google Scholar 

  • Aparicio, V. C., Aimar, S., De Gerónimo, E., Mendez, M. J., & Costa, J. L. (2018). Glyphosate and AMPA concentrations in wind-blown material under field conditions. Land Degradation & Development, 29(5), 1317–1326.

    Article  Google Scholar 

  • Avigliano, L., Alvarez, N., Loughlin, C. M., & Rodríguez, E. M. (2014a). Effects of glyphosate on egg incubation, larvae hatching, and ovarian rematuration in the estuarine crab Neohelice granulata. Environmental Toxicology and Chemistry, 33(8), 1879–1884.

    Article  Google Scholar 

  • Avigliano, L., Fassiano, A. V., Medesani, D. A., Ríos de Molina, M. C., & Rodríguez, E. M. (2014b). Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bulletin of Environmental Contamination and Toxicology, 92(6), 631–635.

    Article  Google Scholar 

  • Avila-Vazquez, M., Maturano, E., Etchegoyen, A., Difilippo, F. S., & Maclean, B. (2017). Association between cancer and environmental exposure to glyphosate. International Journal of Clinical Medicine, 8, 73–85.

    Article  Google Scholar 

  • Avila-Vazquez, M., Difilippo, F., Lean, B., Maturano, E., & Etchegoyen, A. (2018). Environmental exposure to glyphosate and reproductive health impacts in agricultural population of Argentina. Journal of Environmental Protection, 9, 241–253.

    Article  Google Scholar 

  • Bardgett, R. D., & Gibson, D. J. (2017). Plant ecological solutions to global food security. Journal of Ecology, 105, 859–864.

    Article  Google Scholar 

  • Battaglin, W. A., Meyer, M. T., Kuivila, K. M., & Dietze, J. E. (2014). Glyphosate and its degradation product AMPA occur frequently and widely in U.S. soils, surface water, groundwater, and precipitation. JAWRA Journal of the American Water Resources Association, 50, 275–290.

    Article  Google Scholar 

  • Benbrook, C. M. (2018). Why regulators lost track and control of pesticide risks: Lessons from the case of glyphosate-based herbicides and genetically engineered-crop technology. Current Environmental Health Reports, 5(3), 387–395.

    Article  Google Scholar 

  • Bengyella, L., Hetsa, B. A., Fonmboh, D. J., & Jose, R. C. (2021). Assessment of damage caused by evolved fall armyworm on native and transgenic maize in South Africa. Phytoparasitica, 49, 1–12.

    Article  Google Scholar 

  • Bento, C. P. M., Yang, X., Gort, G., Xue, S., van Dam, R., Zomer, P., Mol, H. G. J., Ritsema, C. J., & Geissen, V. (2016). Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of the Total Environment, 572, 301–311.

    Article  Google Scholar 

  • Berg, P., Baltimore, D., Boyer, S. N., Cohen, R. W., Davis, D. S., Hogness, D., Nathan, R., Roblin, D., Watson, J. D., Weissman, H., & Zinder, N. D. (1974). Potential biohazards of recombinant DNA molecules. Science, 185(4148), 303.

    Article  Google Scholar 

  • Berg, P., Baltimore, D., Brenner, S., & Singer, M. F. (1975). Summary statement of the Asilomar conference on recombinant DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 72(6), 1981–1984.

    Article  Google Scholar 

  • Bohm, B., Mariza, G., Rombaldi, C. V., Genovese, M. I., Castilhos, D., Rodrigues Alves, B. J., & Rumjanek, N. G. (2014). Glyphosate effects on yield, nitrogen fixation, and seed quality in glyphosate-resistant soybean. Crop Science, 54, 1737–1743.

    Article  Google Scholar 

  • Bollinedi, H., Gopala, K. S., Sundaram, R. M., Sudhakar, D., Prabhu, K. V., & Singh, N. K. (2014). Marker assisted biofortification of rice with pro-vitamin a using transgenic golden rice lines: Progress and prospects. Indian Journal of Genetics, 74(4), 624–630.

    Article  Google Scholar 

  • Bollinedi, H., Dhakane-Lad, J., Gopala Krishnan, S., Bhowmick, P. K., Prabhu, K. V., Singh, N. K., & Singh, A. K. (2019). Kinetics of β-carotene degradation under different storage conditions in transgenic Golden Rice® lines. Food Chemistry, 278, 773–779.

    Article  Google Scholar 

  • Bonny, S. (2016). Genetically modified herbicide-tolerant crops, weeds, and herbicides: Overview and impact. Environmental Management, 57(1), 31–48.

    Article  Google Scholar 

  • Bourguet, D., Marion, D., & Lemarié, S. (2005). Regulating insect resistance management: The case of non-Bt corn refuges in the US. Journal of Environmental Management, Elsevier, 76(3), 210–220.

    Google Scholar 

  • Bradshaw, D., Stephen, R., Steven, L., & Barbara, H. (1997). Perspectives on glyphosate resistance. Weed Technology, 11(1), 189–198.

    Article  Google Scholar 

  • Burgeff, C., Huerta, E., Acevedo, F., & Sarukhán, J. (2014). How much can GMO and non-GMO cultivars coexist in a Megadiverse Country? From http://www.agbioforum.org/v17n1/v17n1a10-burgeff.htm

  • Campagne, P., Kruger, M., Pasquet, R., Le Ru, B., & Van den Berg, J. (2013). Dominant inheritance of field evolved resistance to Bt corn in Busseolafusca. PLoS One, 8(7), e69675.

    Article  Google Scholar 

  • Carlson, R. H. (2010). Biology is technology. The promise, peril, and new business of engineering life. Harvard University Press.

    Book  Google Scholar 

  • Carreyrou, J. (2018). Bad blood: Secrets and lies in a Silicon Valley startup. Knopf.

    Google Scholar 

  • Carrière, Y., Fabrick, J., & Tabashnik, B. E. (2016). Can pyramids and seed mixtures delay resistance to Bt crops? Trends in Biotechnology, 34(4), 291–302.

    Article  Google Scholar 

  • Chang, Y. C., Lin, Y. S., Xiao, G. T., Chiu, T. C., & Hu, C. C. (2016). A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta, 161, 94–98.

    Article  Google Scholar 

  • Cipriano, J., Carrasco, J. F., & Arbós, M. (2006). La imposible coexistencia: Siete años de transgénicos contaminan el maíz ecológico y el convencional: una aproximación a partir de los casas de Cataluña y Aragón. Assemblea Pagesa de Catalunya/Greenpeace/Plataforma Transgènics Fora.

    Google Scholar 

  • Cohen, S. N., Chang, A. C. Y., Boyer, H. W., & Helling, R. B. (1973). Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences, 70(11), 3240–3244.

    Article  Google Scholar 

  • CropLife. (2018). Bt technology helps protect crops from fall Armyworm. https://croplife.org/news/bt-technology-helps-protect-crops-from-fall-armyworm/

  • Cuhra, M., Traavik, T., & Bøhn, T. (2013). Clone- and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology, 22, 251–262.

    Article  Google Scholar 

  • Cuhra, M., Traavik, T., & Bøhn, T. (2014). Life cycle fitness differences in Daphnia magna fed roundup-ready soy-bean or conventional soybean or organic soybean. Aquaculture Nutrition, 21(5), 702–713.

    Article  Google Scholar 

  • Cuhra, M., Traavik, T., Dando, M., Primicerio, R., Holderbaum, D. F., & Bøhn, T. (2015). Glyphosate-residues in roundup-ready soybean impair Daphnia magna life-cycle. Journal of Agricultural Chemistry and Environment, 04(01), 24–36.

    Article  Google Scholar 

  • DAFF. (2019). Minister’s final decision on the appeal lodged by Monsanto South Africa (PTY) limited under the GMO act, 1997. The decision notice from the Minister is reproduced below and available here: https://www.acbio.org.za/sites/default/files/documents/Minister%27s_final_decision_on_Monsan-to_appeal.pdf

  • Domínguez, A., Brown, G. G., Sautter, K. D., de Oliveira, C. M., de Vasconcelos, E. C., Niva, C. C., Bartz, M. L., & Bedano, J. C. (2016). Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Scientific Reports, 6, 19731.

    Article  Google Scholar 

  • European Commission. (2010). Commission Recommendation of 13 July 2010 on guidelines for the development of national co-existence measures to avoid the unintended presence of GMOs in conventional and organic crops. http://ec.europa.eu/food/plant/docs/plant_gmo-agriculture_coexistence-new_recommendation_en.pdf

  • FAO. (2010). The State of the World’s Plant Genetic Resources for Food and Agriculture. http://www.fao.org/agriculture/crops/core-themes/theme/seeds-pgr/sow/sow2/en

  • Fischer, K., van den Berg, J., & Mutengwa, C. (2015). Is Bt maize effective in improving South African smallholder agriculture? South African Journal of Science, 111(1–2), 1–2.

    Article  Google Scholar 

  • Flockhart, D. T., Pichancourt, J. B., Norris, D. R., & Martin, T. G. (2015). Unravelling the annual cycle in a migratory animal: Breeding-season habitat loss drives population declines of monarch butterflies. The Journal of Animal Ecology, 84, 155–165.

    Article  Google Scholar 

  • FWW & OFARM. (2014). Organic farmers pay the Price for GMO contamination. Issue Brief. http://www.foodandwaterwatch.org/sites/default/files/GMO%20Contamination%20Farmers%20IB%20March%202014_0.pdf

  • Gabriel, A., & Menrad, K. (2015). Cost of coexistence of GM and non-GM products in the food supply chains of rapeseed oil and maize starch in Germany. Agribusiness, 31(4), 472–490.

    Article  Google Scholar 

  • García, M. J., Palma-Bautista, C., Rojano-Delgado, A. M., Bracamonte, E., Portugal, J., Alcántara-de la Cruz, R., & De Prado, R. (2019). The triple amino acid substitution TAP-IVS in the EPSPS gene confers high glyphosate resist-ance to the Superweed Amaranthus hybridus. International Journal of Molecular Sciences, 20(10), 2396.

    Article  Google Scholar 

  • García-Pérez, J. A., Alarcón-Gutiérrez, E., & Díaz-Fleischer, F. (2020). Interactive effect of glyphosate-based herbicides and organic soil layer thickness on growth and reproduction of the tropical earthworm Pontoscolex corethrurus (Müller, 1857). Applied Soil Ecology, 155, 103648.

    Article  Google Scholar 

  • Gaupp-Berghausen, M., Hofer, M., Rewald, B., et al. (2015). Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Scientific Reports, 5, 12886.

    Article  Google Scholar 

  • Gilbert, N. (2014). Cross-bred crops get fit faster. Genetic engineering lags behind conventional breeding in efforts to create drought-resistant maize. Nature, 513, 292.

    Article  Google Scholar 

  • Gilbert, N. (2016). Frugal farming. Old-fashioned breeding techniques are bearing more fruit than genetic engineering in developing self-sufficient super plants. Nature, 533, 308–310.

    Article  Google Scholar 

  • Glover, D., Kim, S. K., & Stone, G. S. (2020). Golden Rice and technology adoption theory: A study of seed choice dynamics among rice growers in the Philippines. Technology in Society, 60, 101227. ISSN 0160-791X.

    Article  Google Scholar 

  • Goodman, M. (2002). New sources of germplasm: Lines, transgenes, and breeders. https://www.semanticscholar.org/paper/NEW-SOURC-ES-OF-GERMPLASM%3A-LINES%2C-TRANSGENES%2C-AND-Goodman/cd971125f1796634edf42ea65f5c3d334518b62e

  • Gould, F., Brown, Z. S., & Kuzma, J. (2018). Wicked evolution: Can we address the sociobio-logical dilemma of pesticide resistance? Science, 360(6390), 728–732.

    Article  Google Scholar 

  • Grushkin, D. (2012). The rise and fall of the company that was going to have us all using biofuels. Fast Company. https://www.fastcompany.com/3000040/rise-and-fall-company-was-going-have-us-all-using-biofuels

  • Hardell, L., Eriksson, M., & Degerman, A. (1994). Exposure to phenoxyacetic acids, chlorophenols, or organic solvents in relation to histopathology, stage, and anatomical localization of non-Hodgkin’s lymphoma. Cancer Research, 54(9), 2386–2389. PMID: 8162585.

    Google Scholar 

  • Hewlett, K. L., & Azeez, G. S. E. (2008). The economic impacts of GM contamination incidents on the organic sector. IFOAM.

    Google Scholar 

  • IARC Monographs Volume 112. (2015). Evaluation of five organophosphate insecticides and herbicides. International Agency for Research on Cancer World Health Organization.

    Google Scholar 

  • ICTSD. (2004). Thai government confirms GM papaya finding. https://ictsd.iisd.org/bridges-news/biores/news/gmo-update-thailand-brazil-eu-regulations

  • International Panel of Experts on Sustainable Food systems/IPES-Food. (2016). From uniformity to diversity: a paradigm shift from industrial agriculture to diversified agroecological systems. http://www.ipes-food.org/images/Re-ports/UniformityToDiversity_FullReport.pdf

  • ISAAA. (2020). Brief 55: Global status of commercialized biotech/GM crops.

    Google Scholar 

  • Latham, J. R., Madeleine, L., & Hilbeck, A. (2017). The distinct properties of natural and GM cry insecticidal proteins. Biotechnology and Genetic Engineering Reviews, 33(1), 62–96, https://doi.org/10.1080/02648725.2017.1357295

  • Kilman, S. (2010). Superweed outbreak triggers arms race. Wall Street Journal.

    Google Scholar 

  • Kranthi, K. (2016). Fertilizers gave high yields, Bt-only provided cover. In Cotton statistics and news. 2016–2017, 39, 27.

    Google Scholar 

  • Lapegna, P. (2016). Genetically modified soybeans, agrochemical exposure, and everyday forms of peasant collabora-tion in Argentina. The Journal of Peasant Studies, 43(2), 517–536.

    Article  Google Scholar 

  • Lindow, S. (2020). Understanding microbial life on leaves. 107th annual Martin Meyerson faculty research lecture. University of California. 2022. https://nature.berkeley.edu/news/2020/08/steven-lindow-lead-martin-meyerson-berkeley-faculty-research-lecture

  • Majewski, M. S., Coupe, R. H., Foreman, W. T., & Capel, P. D. (2014). Pesticides in Mississippi air and rain: A comparison between 1995 and 2007. Environmental Toxicology and Chemistry, 33(6), 1283–1293.

    Article  Google Scholar 

  • McDuffie, H. H., Pahwa, P., McLaughlin, J. R., Spinelli, J. J., Fincham, S., Dosman, J. A., Robson, D., Skinnider, L. F., & Choi, N. W. (2001). Non-Hodgkin’s lymphoma and specific pesticide exposures in men: Cross-Canada study of pesticides and health. Cancer Epidemiology, Biomarkers & Prevention, 10(11), 1155–1163.

    Google Scholar 

  • Mendez, M. J., Aimar, S. B., Aparicio, V. C., Ramirez Haberkon, N. B., Buschiazzo, D. E., De Gerónimo, E., et al. (2017). Glyphosate and Aminomethylphosphonic acid (AMPA) contents in the respirable dust emitted by an agricultural soil of the central semiarid region of Argentina. Aeolian Research, 29, 23–29.

    Article  Google Scholar 

  • Miyazaki, J., Bauer-Panskus, A., Bøhn, T., et al. (2016). Insufficient risk assessment of herbicide-tolerant genetically engineered soybeans intended for import into the EU. Environmental Sciences Europe, 31, 92.

    Article  Google Scholar 

  • Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., & Smith, R. G. (2012). Navigating a critical juncture for sustainable weed management. Bioscience, 62(1), 75–84.

    Article  Google Scholar 

  • NBC News. (2015). Monsanto will pay $350K to settle more GM wheat lawsuits. http://www.nbcnews.com/news/us-news/monsanto-pay-350k-settle-more-wheat-related-lawsuits-n326811

  • Nemali, K. S., Bonin, Ch., Dohleman, F. G., Stephens, M., Reeves, W. R., Nelson, D. E., Castiglioni, P., Whitsel, J. E., Sammons, B., Silady, R. A., Anstrom, D., Sharp, R. E., Patharkar, O. R., Clay, D., Coffin, M., Nemeth, M. A., Leibman, M. E., Luethy, M., & Lawson, M. (2015). Physiological responses related to increased grain yield under drought in the first biotechnology-derived drought-tolerant maize. Plant Cell and Environment, 38, 1866–1880. https://doi.org/10.1111/pce.12446

  • Okada, E., Coggan, T., Anumol, T., Clarke, B., & Allinson, G. (2019). A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and Bioanalytical Chemistry, 411(3), 715–724.

    Article  Google Scholar 

  • Paine, J. A., Shipton, C. A., Chaggar, S., Howells, R. M., Kennedy, M. J., Vernon, G., & Drake, R. (2005). Improving the nutritional value of Golden Rice through increased pro-vitamin a content. Nature Biotechnology, 23(4), 482–487.

    Article  Google Scholar 

  • Pascher, K. (2016). Spread of volunteer and feral maize plants in Central Europe: Recent data from Austria. Environmental Sciences Europe, 28(1), 30.

    Article  Google Scholar 

  • Pérez, G. K., Vera, M. S., & Miranda, L. A. (2012). Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. Herbicides—Properties, Synth. Control Weeds, 334–368.

    Google Scholar 

  • Perry, E. D., Ciliberto, F., Hennessy, D. A., & Moschini, G. (2016). Genetically engineered crops and pesticide use in U.S. maize and soybeans. Science Advances, 2(8), e1600850.

    Article  Google Scholar 

  • Personnel Security Board. (1954). Statement by the Atomic Energy Commission [in the Matter of J. Robert Oppenheimer]. p. 1954. Print.

    Google Scholar 

  • Pleasants, J. (2017). Milkweed restoration in the midwest for monarch butterfly recovery: estimates of milkweeds lost, milkweeds remaining and milkweeds that must be added to increase the monarch population. Insect Conservation and Diversity, 10, 42–53. https://doi.org/10.1111/icad.12198

  • Pleasants, J. M., & Oberhauser, K. S. (2013). Milkweed loss in agricultural fields because of herbicide use: Effect on the monarch butterfly population. Insect Conservation and Diversity, 6, 135–144.

    Article  Google Scholar 

  • Price, B., & Cotter, J. (2014). The GM contamination register: A review of recorded contamination incidents associated with genetically modified organisms (GMOs), 1997–2013. International Journal of Food Contamination, 1, 5.

    Article  Google Scholar 

  • Relyea, R. A. (2005a). The lethal impacts of roundup and predatory stress on six species of north American tadpoles. Archives of Environmental Contamination and Toxicology, 48(3), 351–357.

    Article  Google Scholar 

  • Relyea, R. A. (2005b). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications, 15, 618–627.

    Article  Google Scholar 

  • Relyea, R. A. (2005c). The lethal impacts of Roundup and predatory stress on six species of North American tad-poles. Archives of Environmental Contamination and Toxicology, 48, 351–357.

    Article  Google Scholar 

  • Relyea, R. A., & Jones, D. K. (2009). The toxicity of roundup original max to 13 species of larval amphibians. Environmental Toxicology and Chemistry, 28(9), 2004–2008.

    Article  Google Scholar 

  • Roosevelt, F. D. (1944). Typed letter to Vannevar Bush, Office of Scientific Research and Development, Washington, DC. Online version at the National Science Foundation (USA). https://www.nsf.gov/od/lpa/nsf50/vbush1945.htm#letter

  • Rzymski, P., Klimaszyk, P., Kubacki, T., & Poniedzialek, B. (2013). The effect of glyphosate-based herbicide on aquatic organisms- a case study. Limnological Review, 4, 215–220.

    Article  Google Scholar 

  • Sanchís, J., Kantiani, L., Llorca, M., Rubio, F., Ginebreda, A., Fraile, J., Garrido, T., & Farré, M. (2012). Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 402(7), 2335–2345.

    Article  Google Scholar 

  • Santadino, M., Coviella, C., & Momo, F. (2014). Glyphosate sublethal effects on the population dynamics of the earth-worm Eisenia fetida (Savigny, 1826). Water, Air, and Soil Pollution, 225, 2207. https://doi.org/10.1007/s11270-014-2207-3

    Article  Google Scholar 

  • Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E., & Zipkin, E. F. (2018). Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies Danaus plexippus. Ecography, 41, 278–290.

    Article  Google Scholar 

  • Schaefer, A., & Carter, A. (2015). GMO trade in a world of fragmented consumer preferences and needs. International Centre for Trade and Sustainable Development. http://www.ictsd.org/bridges-news/biores/news/gmo-trade-in-a-world-of-fragmented-consumer-preferences-and-needs

  • Secretaria de Ambiente y Desarrollo Sustentable. (2008). El avance de la frontera agropecuaria y sus consecuencias. http://redaf.org.ar/wp-content/uploads/2008/10/el-avance-de-la-frontera-agropecuaria-y-sus-consecuencias-secretaria-de-ambiente-y-desarrollo-sustentable-mar-zo-2008.pdf

  • Shelton, A. M., Long, S. J., Walker, A. S., Bolton, M., Collins, H. L., Revuelta, L., Johnson, L. M., & Morrison, N. I. (2020). First field release of a genetically engineered, self-limiting agricultural pest insect: Evaluating its potential for future crop protection. Frontiers in Bioengineering and Biotechnology, 7, 482.

    Article  Google Scholar 

  • Sikorski, Ł., Baciak, M., Bęś, A., & Adomas, B. (2019). The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquatic Toxicology, 209, 70–80.

    Article  Google Scholar 

  • Silver, S. (2020). Patenting a living microbial cell: 40th anniversary of US supreme court decision diamond versus Chakrabarty. FEMS Microbiology Letters, 367, 13.

    Article  Google Scholar 

  • Smyth, S., Khachatourians, G. G., & Philips, P. W. B. (2002). Liabilities and economics of transgenic crops. Nature Biotechnology, 20, 537–541.

    Article  Google Scholar 

  • Stone, G. D., & Glover, D. (2017). Disembedding grain: Golden Rice, the Green Revolution, and heirloom seeds in the Philippines. Agricultural Human Values, 34, 87–102. https://doi.org/10.1007/s10460-016-9696-1

  • Stone, G. D., & Flachs, A. (2018). The ox fall down: Path-breaking and technology treadmills in Indian cotton agriculture. The Journal of Peasant Studies, 45(7), 1272–1296.

    Article  Google Scholar 

  • Strydom, E., Erasmus, A., du Plessis, H., & Van den Berg, J. (2019). Resistance status of Busseola fusca (Lepidoptera: Noctuidae) populations to single- and stacked-gene Bt maize in South Africa. Journal of Economic Entomology, 112(1), 305–315.

    Article  Google Scholar 

  • Tabashnik, B. E., & Carrière, Y. (2017). Surge in insect resistance to transgenic crops and pros- pects for sustainability. Nature Biotechnology, 35(10), 926.

    Article  Google Scholar 

  • Taylor, O. R., Jr., Pleasants, J. M., Grundel, R., Pecoraro, S. D., Lovett, J. P., & Ryan, A. (2020). Evaluating the migration mortality hypothesis using monarch tagging data. Frontiers in Ecology and Evolution, 8, 264.

    Article  Google Scholar 

  • Thogmartin, W. E., Wiederholt, R., Oberhauser, K., Dunn, R. G., Diffendorfer, J. E., Altizer, S., et al. (2017). Monarch butterfly population decline in North America: Identifying the threatening processes. Royal Society Open Science, 4, 170760.

    Article  Google Scholar 

  • USDA, NASS. (2015). 2012 Census of Agriculture. Organic Survey (2014). Volume 3, Special Studies, Part 4. http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Organics/ORGANICS.pdf

  • Waltz, E. K. (2015). To boldly go into synthetic biology. Nature Biotechnology, 33, 1017–1018.

    Article  Google Scholar 

  • Wechsler, S. J., Smith, D., McFadden, J., Dodson, L., & Williamson, S. (2019). The use of genetically engineered dicamba-tolerant soybean seeds has increased quickly, benefiting adopters but damaging crops in some fields. United States Department of Agriculture—Economic Research Service. Available online at: https://www.ers.usda.gov/am-ber-waves/2019/october/the-use-of-genetically-engineered-dicamba-tolerant-soybean-seeds-has-increased-quick-ly-benefiting-adopters-but-damaging-crops-in-some-fields/

  • Wilson. (2020). Will gene-edited and other GM crops fail sustainable food systems? Chapter 13, rethinking food and agriculture. Woodhead Publishing.

    Google Scholar 

  • Zahm, S. H., Weisenburger, D. D., Babbitt, P. A., Saal, R. C., Vaught, J. B., Cantor, K. P., & Blair, A. (1990). A case-control study of non-Hodgkin’s lymphoma and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in eastern Nebraska. Epidemiology, 1(5), 349–356.

    Article  Google Scholar 

  • Zaller, J. G., Heigl, F., Ruess, L., & Grabmaier, A. (2014). Glyphosate herbicide affects belowground interactions be-tween earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific Reports, 4, 5634. https://doi.org/10.1038/srep05634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chapela, I., Hilbeck, A. (2023). GMOs and Human and Environmental Safety. In: Valdés, E., Lecaros, J.A. (eds) Handbook of Bioethical Decisions. Volume I. Collaborative Bioethics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-29451-8_39

Download citation

Publish with us

Policies and ethics