Skip to main content
Log in

Assessment of damage caused by evolved fall armyworm on native and transgenic maize in South Africa

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a transboundary polyphagous insect pest which preferentially feeds on grain crops. The FAW was responsible for economic damage to maize crops in more than 44 African countries by 2019 accounting for the loss of over US$2–5.5 billion. The parallel cultivation of Bt-maize expressing Cry1Ab protein and indigenous maize varieties in some African countries was aimed to enhance output and mitigate the harmful impact of the Lepidopteran insect below the economic injury level. A total of six maize farms (holding at least 4–20 ha of land) in delocalized geographies of Gauteng province, South Africa were randomly selected and assessed for the impact of FAW during the 2017 outbreak. A biotype of S. frugiperda that significantly destroyed Bt maize and non-Bt maize and exhibited tolerance to pesticides under field conditions is reported. It is observed that, whether maize at the tasseling stage carried the Cry1Ab trait or not, S. frugiperda caused a minimum damage of ~62.6% (P < 0.05, P = 0.0001, |t| = 2.78) and maximum damage of ~83.33% (P < 0.05, P = 0.0001, |t| = 2.78) in farms without refuge strategies. Phylogenetic analysis using the mitochondrial cytochrome oxidase I gene, revealed divergent evolution amongst reported S. frugiperda lineages, the emergence of singleton, and distinct haplotypes within the African continent. It is concluded that S. frugiperda that invaded maize farms in the Gauteng region of South Africa is genetically evolved from those identified in São Tomé and Príncipe, and Nigeria, and tolerant to certain insecticides. Thus, the African continent might have been invaded by several routes and distinct haplotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2017b) Cyperfos 500 EC. http://www.nulandis.com/sites/default/files/downloads/Cyperfos%20500%20EC.pdf. Accessed 1 February 2017.

  • Anonymous. (2017a) Methomex® 900 SP. https://www.adama.com/documents/1297416/1298191/methomex90sp_tcm54-23639.pdf. Accessed 28 April 2017.

  • Ávila, C. J., Degrande, P. E., Gomez, S. A. (1997). Insetos-pragas: reconhecimento, comportamento, danos e controle. In: EMBRAPA. Centro de Pesquisa Agropecuária do Oeste. Milho: informações técnicas. Dourados 1997, 157–181.

  • Babatunde, J. (2017). Africa faces $2bn maize deficit if fall armyworm is not managed. https://www.vanguardngr.com/2017/09/africa-faces-2bn-maize-deficit-fall-armyworm-not-poorly-managed/. Accessed 8 September 2017.

  • Bengyella, L., Yekwa, E. L., Iftikhar, S., Nawaz, K., Jose, R. C., Fonmboh, D. J., Tambo, E., Roy, P. (2018a). Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century. 3Biotech 8, 464(2018). https://doi.org/10.1007/s13205-018-1484-8.

  • Bengyella, L., Yekwa, E. L., Nawaz, K., Iftikhar, S., Tambo, E., Alisoltani, A., Feto, A. A., & Roy, P. (2018b). Global invasive Cochliobolus species: Cohort of destroyers with implications in food losses and insecurity in the twenty-first century. Archives of Microbiology, 200, 119–135.

    Article  CAS  Google Scholar 

  • Bhusal, S., & Chapagain, E. (2020). Threats of fall armyworm (Spodoptera frugiperda) incidence in Nepal and it’s integrated management-a review. Journal of Agriculture and Natural Resources, 3(1), 345–359.

    Article  Google Scholar 

  • Brown, E. S., & Dewhurst, C. F. (1975). The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bulletin of Entomological Research, 65, 221–262.

  • Capinera, J. L. (2017). Fall armyworm, Spodoptera frugiperda (J.E. smith) (Insecta: Lepidoptera: Noctuidae). http://edis.ifas.ufl.edu/in255, Accessed 10 October 2017.

  • Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S., & Bass, C. (2013). Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One, 8, e62268.

    Article  CAS  Google Scholar 

  • Davis, F.M.; Williams, W. P. (2017). Visual rating scales for screening whorl-stage corn for resistance to fall armyworm; technical bulletin 186; Mississippi Agricultural and Forestry Research Experiment Station: Mississippi State, MS, USA, 1992. http://www.nal.usda.gov/. Accessed on 1 October 2017.

  • Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Gonzalez Moreno, P., Murphy, S. T., et al. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196–201.

    Article  Google Scholar 

  • Diez-Rodriguez, G. I., & Omoto, C. (2001). Inheritance of lambda-cyhalothrin resistance in Spodoptera frugiperda (J.E. smith) (Lepidoptera: Noctuidae). Neotropical Entomology, 30, 311–316.

    Article  Google Scholar 

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.

    Article  CAS  Google Scholar 

  • FAO. (2017). Briefing note on FAO actions on fall armyworm in Africa. https://reliefweb.int/sites/reliefweb.int/files/resources/a-bt415e_0.pdf. Accessed 24 October 2017.

  • FAO. (2019). Briefing notes on FAO actions on fall armyworm. http://www.fao.org/3/a-bs183e.pdf. Accessed 9 March 2019.

  • Fatoretto, J., Michel, A. P., Filho, M. C. S., & Silva, N. (2017). Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil. Journal of Integrated Pest Management, 8(1)17, 1–10.

  • Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., & Tamò, M. (2016). First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and Central Africa. PLoS One, 11(10), e0165632.

    Article  Google Scholar 

  • Hruska, A., & Gould, F. (1997). Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): Impact of larval population level and temporal occurrence on maize yield in Nicaragua. Journal of Economic Entomology, 90, 611–622.

    Article  Google Scholar 

  • Igyuve, T. M., Ojo, G. O. S., Ugbaa, M. S., & Ochigbo, A. E. (2018). Fall army worm (Spodoptera frugiperda); it’s biology, impact and control on maize production in Nigeria. Nigerian Journal of Crop Science, 5(1), 70–79.

    Google Scholar 

  • Jakka, S. R. K., Gong, L., Hasler, J., Banerjee, R., Sheets, J. J., Narva, K., Blanco, C. A., & Jurat-Fuentes, J. L. (2016). Field-evolved mode 1 resistance of the fall armyworm to transgenic Cry1Fa-expressing corn associated with reduced Cry1Fa toxin binding and midgut alkaline phosphatase expression. Applied and Environmental Microbiology, 82, 1023–1034.

    Article  CAS  Google Scholar 

  • James C. (2007). Global status of commercialized biotech/GM crops 2007: ISAAA Brief No. 37 (pp. 63–67). http://www.isaaa.org/Resources/Publications/briefs/37/download/isaaa-brief-37-2007.pdf. Accessed 1 January 2007.

  • James C. (2014). Global Status of Commercialized Biotech/GM Crops: 2014. ISAAA Brief No. 49 (pp. 106–108). http://www.isaaa.org/resources/publications/briefs/49/download/isaaa-brief-49-2014.pdf. Accessed 25 March 2014.

  • Kunert, K. J. (2011). How effective and safe is Bt-maize in South Africa? South African Journal of Science, 107, 9–10.

    Article  Google Scholar 

  • Nagoshi, R. N., Dhanani, I., Asokan, R., Mahadevaswamy, H. M., Kalleshwaraswamy, C. M., Sharanabasappa, & Meagher, R. L. (2019). Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS One, 14(5), e0217755.

    Article  CAS  Google Scholar 

  • Nagoshi, R. N., Koffi, D., Agboka, K., Tounou, K. A., Banerjee, R., Jurat-Fuentes, J. L., & Meagher, R. L. (2017). Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the greater Antilles. PLoS One, 12(7), e0181982.

    Article  Google Scholar 

  • Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.

    Google Scholar 

  • OEPP/ EPPO. (2015). PM 7/124 (1) Spodopteralittoralis, Spodopteralitura, Spodopterafrugiperda, Spodopteraeridania. European and Mediterranean Plant Protection Organization, 2015, 410–444. https://doi.org/10.1111/epp.12258.

    Article  Google Scholar 

  • Omoto, C., Bernadi, O., Salmeron, E., Sorgatto, R. J., Dourado, R. J., Crivellari, A., Willse, A., et al. (2016). Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72(9), 1727–1736.

    Article  CAS  Google Scholar 

  • Pague, M. (2002). A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Memoirs of the American Entomological Society, 43, 1–202.

    Google Scholar 

  • Prasanna, B. M., Huesing, J. E., Eddy, R., & Peschke, V. M. (2018). Fall armyworm in Africa: A guide for integrated pest management, 1st ed.; CIMMYT: Edo Mex, Mexico. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/19204/59133.pdf. Accessed 1 January 2018.

  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology and Evolution, 3, 430–439.

    Article  Google Scholar 

  • Sisay, B., Simiyu, J., Mendesil, E., Likhayo, P., Ayalew, G., Mohamed, S., Subramanian, S., & Tefrera, T. (2019). Fall armyworm, Spodoptera frugiperda infestations in East Africa: Assessment of damage and parasitism. Insects, 2019(10), 195.

    Article  Google Scholar 

  • Storer, N. P., Thompson, G. D., & Head, G. P. (2012). Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops and Food, 3, 154–162.

    Article  Google Scholar 

  • Szekacs, A., Weiss, G., Quist, D., Takacs, E., Darvas, B., Meier, M., Swain, T., & Hilbeck, A. (2012). Inter-laboratory comparison of Cry1Ab toxin quantification in MON 810 maize by enzyme-immunoassay. Food and Agricultural Immunology, 23, 99–121.

    Article  CAS  Google Scholar 

  • Tabashnik, B. E., Brevault, T., & Carriere, Y. (2013). Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnology, 31, 510–521.

    Article  CAS  Google Scholar 

  • Tajima, F. (1993). Simple methods for testing molecular clock hypothesis. Genetics, 135, 599–607.

    Article  CAS  Google Scholar 

  • Tajima, F. (1989). Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    Article  CAS  Google Scholar 

  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C content biases. Molecular Biology and Evolution, 9, 678–687.

    CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2014). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(1), 2725–2729.

    Google Scholar 

  • Tefera, T., Mugo, S., Mwimali, M., Anani, B., Tende, R., Beyene, Y., Gichuki, S., Oikeh, S. O., Nang'ayo, F., Okeno, J., Njeru, E., Pillay, K., Meisel, B., & Prasanna, B. M. (2016). Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya. Crop Protection, 89, 202–208.

    Article  Google Scholar 

  • Van-Rensburg, J. B. J. (2007). First report of field resistance by the stem borer, Busseola fusca (fuller) to Bt-transgenic maize. South African Journal of Plant and Soil, 24, 147–151.

    Article  Google Scholar 

  • Wild, S. (2017). Invasive pest hits Africa. Nature, 543, 13–14.

    Article  CAS  Google Scholar 

  • Wilson. K. (2017). Armyworms are wreaking havoc in southern Africa. Why it’s a big deal. http://theconversation.com/armyworms-are-wreaking-havoc-in-southern-africa-why-its-a-big-deal-72822. Accessed 12 February 2017.

Download references

Acknowledgments

The authors are grateful to Mr. Pierre who allowed his farms and the investigator to conceive the approach for pesticide application and for using his genetically modified Cry1Ab–maize plants and Vaal University Technology Post-Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Bengyella.

Ethics declarations

All work was approved by the Vaal University of Technology, no human was used.

Conflict of interest

No competing interest was declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 4620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengyella, L., Hetsa, B.A., Fonmboh, D.J. et al. Assessment of damage caused by evolved fall armyworm on native and transgenic maize in South Africa. Phytoparasitica 49, 1–12 (2021). https://doi.org/10.1007/s12600-020-00862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00862-z

Keywords

Navigation