Skip to main content

Use of Plant-Derived Nanoparticles in Cancer Therapy

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

The rapid progress of nanotechnology in the manufacture of nanomedicinal compounds delivers the potential for enhancing cancer therapy strategies. Nanoparticle-based medicinal products raise the chance of developing multifunctionality and targeted delivery approaches. The use of nanoparticles in cancer therapy using plant resources is based on the efficacy of plant-based nanoparticles in the medical field, particularly in the prevention, diagnosis and treatment of various cancers. Green nanoparticles appear to be a new tool for biomarkers for cancer screening and drug delivery to tumour cells. The use of plants to produce nanoparticles has been investigated extensively. The bonding of diverse potent bioactive residues in medicinal plant-based nanoparticles has been discovered to be the most pharmacologically active material. Phytonanotechnology, now being concentrated, explores the various ways to assemble nanoparticles with potential therapeutics. This approach delivers biocompatibility, scalability and therapeutic efficacy of the synthesised nanoparticles. Therefore, plant-derived nanoparticles are green, non-toxic, and, with the use of the efficient technique, are suitable to meet the high demand in biomedicines. This review opens up possible applications of phytocompound-based nanoparticles and it also highlights cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang ZB, Jiang H, Xia YG, Yang BY, Kuang HX (2012) α-Glucosidase inhibitory constituents from Acanthopanax senticosus harm leaves. Molecules 17(6):6269–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chin WW, Parmentier J, Widzinski M, Tan EH, Gokhale R (2014) A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci 103(10):2980–2999. https://doi.org/10.1002/jps.24098. Epub 2014 Aug 6. PMID: 25099918

    Article  CAS  PubMed  Google Scholar 

  3. Hwang KA, Park MA, Kang NH, Yi BR, Hyun SH, Jeung EB, Choi KC (2013) Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β- estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways. Toxicol Appl Pharmacol 272(3):637–646

    Article  CAS  PubMed  Google Scholar 

  4. Choi EJ, Jung JY, Kim GH (2014) Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp Ther Med 8(2):454–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo Y, Wang SX, Zhou ZQ, Wang Z, Zhang YG, Zhang Y, Zhao P (2014) Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor- kappa B (NF-κB) pathway. Tumour Biol 35(11):11483–11488

    Article  CAS  PubMed  Google Scholar 

  6. Yamasaki M, Mine Y, Nishimura M, Fujita S, Sakakibara Y, Suiko M, Morishita K, Nishiyama K (2013) Genistein induces apoptotic cell death associated with inhibition of the NF-κB pathway in adult T-cell leukaemia cells. Cell Bio Int 37(7):742–747. https://doi.org/10.1002/cbin.10101. Epub 2013 Apr 18. PMID: 23526666

    Article  CAS  Google Scholar 

  7. Zhang Z, Wang CZ, Du GJ, Qi LW, Calway T, He TC et al (2013) Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells. Int J Oncol 43(1):289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hirata H, Hinoda Y, Shahryari V, Deng G, Tanaka Y, Tabatabai ZL, Dahiya R (2014) Genistein downregulates onco-miR-1260b and upregulates sFRP1 and Smad4 via demethylation and histone modification in prostate cancer cells. Br J Cancer 110(6):1645–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hirata H, Ueno K, Nakajima K, Tabatabai ZL, Hinoda Y, Ishii N, Dahiya R (2013) Genistein downregulates onco-miR-1260b and inhibits Wnt-signalling in renal cancer cells. Br J Cancer 108(10):2070–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiyomaru T, Yamamura S, Fukuhara S, Hidaka H, Majid S, Saini S et al (2013) Genistein up-regulates tumour suppressor microRNA-574-3p in prostate cancer. PLoS One 8(3):e58929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trejo-Solís C, Pedraza-Chaverrí J, Torres-Ramos M, Jiménez-Farfán D, Cruz Salgado A, Serrano-García N et al (2013) Multiple molecular and cellular mechanisms of action of lycopene in cancer inhibition. Evid Based Complement Altern Med 2013:1–17, page 45:47. http://dx.doi.org/10.1155/2013/705121

  12. Uppala PT, Dissmore T, Lau BH, Andacht T, Rajaram S (2013) Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis. Phytother Res 27(4):595–601. https://doi.org/10.1002/ptr.4764. Epub 2012 Jun 21. PMID: 22718574

    Article  CAS  PubMed  Google Scholar 

  13. Gharib A, Faezizadeh Z (2014) In vitro anti-telomerase activity of novel lycopene- loaded nanospheres in the human leukaemia cell line K562. Pharmacogn Mag 10(Suppl 1):S157

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haddad NF, Teodoro AJ, Leite de Oliveira F, Soares N, de Mattos RM, Hecht F et al (2013) Lycopene and beta-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells. PLoS One 8(5):e62773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elgass S, Cooper A, Chopra M (2014) Lycopene treatment of prostate cancer cell lines inhibits adhesion and migration properties of the cells. Int J Med Sci 11(9):948

    Article  PubMed  PubMed Central  Google Scholar 

  16. Holzapfel NP, Holzapfel BM, Champ S, Feldthusen J, Clements J, Hutmacher DW (2013) The potential role of lycopene for the prevention and therapy of prostate cancer: from molecular mechanisms to clinical evidence. Int J Mol Sci 14(7):14620–14646. https://doi.org/10.3390/ijms140714620. PMID: 23857058; PMCID: PMC3742263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang CM, Yen YT, Huang CS, Hu ML (2011) Growth inhibitory efficacy of lycopene and β-carotene against androgen-independent prostate tumor cells xenografted in nude mice. Mol Nutr Food Res 55(4):606–612

    Article  CAS  PubMed  Google Scholar 

  18. Chari RV, Miller ML, Widdison WC (2014) Antibody–drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed 53(15):3796–3827

    Article  CAS  Google Scholar 

  19. Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumours: improvement of tumour uptake, lowering of systemic toxicity, and distinct tumour imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    Article  CAS  PubMed  Google Scholar 

  20. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumour blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    Article  CAS  PubMed  Google Scholar 

  21. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  22. Patel NR, Pattni BS, Abouzeid AH, Torchilin VP (2013) Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev 65(13–14):1748–1762

    Article  CAS  PubMed  Google Scholar 

  23. Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) New frontiers in nanotechnology for cancer treatment. In: Urologic oncology: seminars and original investigations, 26(1):74–85, page 56:58. Elsevier, New York, United States of America. Urologic Oncology: Seminars and Original Investigations. https://doi.org/10.1016/j.urolonc.2007.03.017

  24. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  CAS  PubMed  Google Scholar 

  25. Stinchcombe TE (2007) Nanoparticle albumin-bound paclitaxel: a novel Cremphor- EL®-free formulation of paclitaxel. Nanomedicine 2(4). https://doi.org/10.2217/17435889.2.4.415

  26. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S (2009) Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine 4:99

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh K, Sai Nandhini R, Palanivelu J (2021) Nanosponges: in perspective to therapeutic medicine. In: Nanotechnology in medicine. Springer, Cham, pp 87–104

    Google Scholar 

  28. Kratz F, Elsadek B (2012) Clinical impact of serum proteins on drug delivery. J Control Release 161(2):429–445

    Article  CAS  PubMed  Google Scholar 

  29. Petrelli F, Borgonovo K, Barni S (2010) Targeted delivery for breast cancer therapy: the history of nanoparticle-albumin-bound paclitaxel. Expert Opin Pharmacother 11(8):1413–1432

    Article  CAS  PubMed  Google Scholar 

  30. Reddy LH, Bazile D (2014) Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv Drug Deliv Rev 71:34–57

    Article  CAS  PubMed  Google Scholar 

  31. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E et al (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5):1038–1044

    CAS  PubMed  Google Scholar 

  32. US Food and Drug Administration (2012) ABRAXANE® for injectable suspension (paclitaxel protein-bound particles for injectable suspension) (albumin-bound)

    Google Scholar 

  33. Roy U, Chakravarty G, Zu Bentrup KH, Mondal D (2009) Montelukast is a potent and durable inhibitor of multidrug resistance protein 2-mediated efflux of taxol and saquinavir. Biol Pharm Bull 32(12):2002–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Javed B, Ikram M, Farooq F, Sultana T, Mashwani ZUR, Raja NI (2021) Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: a mechanistic overview. Appl Microbiol Biotechnol 105(6):2261–2275

    Article  CAS  PubMed  Google Scholar 

  35. Prakash NU, Bhuvaneswari S, Nandhini RS, Azeez NA, Al-Arfaj AA, Munusamy MA (2015) Floral synthesis of silver nanoparticles using Stenolobium stans L. Asian J Chem 27(11):4089

    Article  Google Scholar 

  36. Yesilot S, Aydin C (2019) Silver nanoparticles; a new hope in cancer therapy? East J Med 24(1):111–116

    Article  Google Scholar 

  37. Alhadrami HA, Alkhatabi H, Abduljabbar FH, Abdelmohsen UR, Sayed AM (2021) Anticancer potential of green synthesized silver nanoparticles of the soft coral cladiellapachyclados supported by network pharmacology and in silico analyses. Pharmaceutics 13(11):1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu XK, Rao SS, Tan YJ, Yin H, Luo MJ, Wang ZX et al (2020) Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Theranostics 10(17):7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mengesha AE, Youan BC (2013) Nanodiamonds for drug delivery systems. In: Diamond-based materials for biomedical applications. Woodhead Publishing, Elsevier, Sawston, Cambridge, UK, pages 186–205

    Google Scholar 

  40. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  CAS  Google Scholar 

  41. Horie M, Komaba LK, Kato H, Nakamura A, Yamamoto K, Endoh S et al (2012) Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diam Relat Mater 24:15–24

    Article  CAS  Google Scholar 

  42. Gwak R, Lee GJ, Kim H, Lee MK, Rhee CK, Dae-Ro C et al (2015) Efficient doxorubicin delivery using deaggregated and carboxylatednanodiamonds for cancer cell therapy. Nanosci Nanotechnol Lett 7(9):723–728

    Article  Google Scholar 

  43. Xiao J, Duan X, Yin Q, Zhang Z, Yu H, Li Y (2013) Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34(37):9648–9656

    Article  CAS  PubMed  Google Scholar 

  44. National Center for Biotechnology Information (2022) PubChem compound summary for CID 2775, Citropten. Retrieved February 25, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Citropten

  45. Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A (2005) Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs 16(7):691–707

    Article  CAS  PubMed  Google Scholar 

  46. Silverman JA, Deitcher SR (2013) Marqibo(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 71(3):555–564

    Article  CAS  PubMed  Google Scholar 

  47. Castle MC, Mead JAR (1978) Investigations of the metabolic fate of tritiated vincristine in the rat by high-pressure liquid chromatography. Biochem Pharmacol 27(1):37–44

    Article  CAS  PubMed  Google Scholar 

  48. Krishna R, Webb MS, Onge GS, Mayer LD (2001) Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J Pharmacol Exp Ther 298(3):1206–1212

    CAS  PubMed  Google Scholar 

  49. Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD (1995) Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer 72(4):896–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hagemeister F, Rodriguez MA, Deitcher SR, Younes A, Fayad L, Goy A, Cabanillas F (2013) Long term results of a phase 2 study of vincristine sulfate liposome injection (M arqibo) substituted for non-liposomal vincristine in cyclophosphamide, doxorubicin, vincristine, prednisone with or without rituximab for patients with untreated aggressive non-H odgkin lymphomas. Br J Haematol 162(5):631–638

    Article  CAS  PubMed  Google Scholar 

  51. Ye L, He J, Hu Z, Dong Q, Wang H, Fu F, Tian J (2013) Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem Toxicol 52:200–206

    Article  CAS  PubMed  Google Scholar 

  52. Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J (2013) Clinical comparison between paclitaxel liposome (Lipusu) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14(4):2591–2594

    Article  PubMed  Google Scholar 

  53. Cabral H, Kataoka K (2014) Progress of drug-loaded polymeric micelles into clinical studies. J Control Release 190:465–476

    Article  CAS  PubMed  Google Scholar 

  54. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72(1–3):191–202

    Article  CAS  PubMed  Google Scholar 

  55. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250

    Article  CAS  PubMed  Google Scholar 

  56. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716. https://doi.org/10.1158/1078-0432.CCR-03-0655. PMID: 15173077

    Article  CAS  PubMed  Google Scholar 

  57. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr 40(1):82–92

    Google Scholar 

  58. Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8(2):90

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mohan UP, Sriram B, Panneerselvam T, Devaraj S, Mubarak Ali D, Parasuraman P et al (2020) Utilization of plant-derived Myricetin molecule coupled with ultrasound for the synthesis of gold nanoparticles against breast cancer. Naunyn Schmiedeberg’s Arch Pharmacol 393(10):1963–1976

    Article  CAS  Google Scholar 

  60. Fern K (2018) Tropical plants database, Ken Fern. tropical. theferns. info

    Google Scholar 

  61. Gu FX, Karnik R, Wang AZ, Alexis F, Levy-Nissenbaum E (2007) Targeted nanoparticles for cancer treatment. Nano Today 2:14–21

    Article  Google Scholar 

  62. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic nanoparticles. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  63. Mishra B, Patel BB, Tiwari S (2009) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: NBM 1:17

    Google Scholar 

  64. Lim KJ, Bisht S, Bar EE, Maitra A, Eberhart CG (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11(5):464–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zu Y, Wang D, Zhao X, Jiang R, Zhang Q, Zhao D et al (2011) A novel preparation method for camptothecin (CPT) loaded folic acid conjugated dextran tumor- targeted nanoparticles. Int J Mol Sci 12(7):4237–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pimple S, Manjappa AS, Ukawala M, Murthy RSR (2012) PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: in vitro cell line study to ensure advantage of combination therapy. Cancer Nanotechnol 3(1):25–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Siu YS, Li L, Leung MF, Lee KLD, Li P (2012) Polyethylenimine-based amphiphilic core–shell nanoparticles: study of gene delivery and intracellular trafficking. Biointerphases 7(1):16

    Article  CAS  PubMed  Google Scholar 

  68. Tang X, Cai S, Zhang R, Liu P, Chen H, Zheng Y, Sun L (2013) Paclitaxel- loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res Lett 8(1):1–12

    Article  Google Scholar 

  69. Sundar VD, Dhanaraju MD, Sathyamoorthy N (2014) Fabrication and characterization of etoposide loaded magnetic polymeric microparticles. Int J Drug Deliv 6(1):24

    Google Scholar 

  70. Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA- based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yang A, Liu Z, Yan B, Zhou M, Xiong X (2016) Preparation of camptothecin- loaded targeting nanoparticles and their antitumor effects on hepatocellular carcinoma cell line H22. Drug Deliv 23(5):1699–1706

    CAS  PubMed  Google Scholar 

  72. Zhou H, Liu X, Wu F, Zhang J, Wu Z, Yin H, Shi H (2016) Preparation, characterization, and antitumor evaluation of electrospun resveratrol loaded nanofibers. J Nanomaterials 2016

    Google Scholar 

  73. Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59(6):491–504

    Article  CAS  PubMed  Google Scholar 

  74. Ekambaram P, Sathali AAH, Priyanka K (2012) Solid lipid nanoparticles: a review. Sci Rev Chem Commun 2(1):80–102

    CAS  Google Scholar 

  75. Yassin AEB, Albekairy A, Alkatheri A, Sharma RK (2013) Anticancer- loaded solid lipid nanoparticles: high potential advancement in chemotherapy. Digest J Nanomater Biostruct (DJNB) 8(2):905–916

    Google Scholar 

  76. Abd-Allah FI, Dawaba HM, Samy AM, Nutan MT (2014) Application of solvent injection method to develop stable, sustained release solid lipid nanoparticles of curcumin. Int J Dev Res 4:2734–2742

    Google Scholar 

  77. Chadha R, Kapoor VK, Thakur D, Kaur R, Arora P, Jain DVS (2008) Drug carrier systems for anticancer agents: a review. J Sci Ind Res 67:185–197

    CAS  Google Scholar 

  78. Narayanan NK, Nargi D, Randolph C, Narayanan BA (2009) Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125(1):1–8

    Article  CAS  PubMed  Google Scholar 

  79. Ramana LN, Sharma S, Sethuraman S, Ranga U, Krishnan UM (2012) Investigation on the stability of saquinavir loaded liposomes: implication on stealth, release characteristics and cytotoxicity. Int J Pharm 431(1–2):120–129

    Article  CAS  PubMed  Google Scholar 

  80. Venegas B, Zhu W, Haloupek NB, Lee J, Zellhart E, Sugár IP, Kiani MF, Chong PL (2012) Cholesterol superlattice modulates CA4P release from liposomes and CA4P cytotoxicity on mammary cancer cells. Biophys J 102(9):2086–2094. https://doi.org/10.1016/j.bpj.2012.03.063. PMID: 22824272; PMCID: PMC3341537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shah SM, Goel PN, Jain AS, Pathak PO, Padhye SG, Govindarajan S, Ghosh SS, Chaudhari PR, Gude RP, Gopal V, Nagarsenker MS (2014) Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. Int J Pharm 477(1–2):128–139. https://doi.org/10.1016/j.ijpharm.2014.10.014. Epub 2014 Oct 11. PMID: 25311181

    Article  CAS  PubMed  Google Scholar 

  82. Mehrabi M, Esmaeilpour P, Akbarzadeh A, Saffari Z, Farahnak M, Farhangi A, Chiani M (2016) Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turk J Med Sci 46(2):567–571

    Article  CAS  PubMed  Google Scholar 

  83. Li R, Wu RA, Zhao L, Hu Z, Guo S, Pan X, Zou H (2011) Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 49(5):1797–1805

    Google Scholar 

  84. Tian Z, Shi Y, Yin M, Shen H, Jia N (2011) Functionalized multiwalled carbon nanotubes-anticancer drug carriers: synthesis, targeting ability and antitumor activity. Nano Biomed Eng 3(3)

    Google Scholar 

  85. Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R: Rep 43(3):61–102

    Article  Google Scholar 

  86. Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M et al (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74(1–3):295–302

    Article  CAS  PubMed  Google Scholar 

  87. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60(10):1137–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor targeted drug delivery based on EPR effect. Eur J Pharm Biopharm 71(3):409

    Article  CAS  PubMed  Google Scholar 

  89. Mourya VK, Inamdar N, Nawale RB, Kulthe SS (2011) Polymeric micelles: general considerations and their applications. Indian J Pharm Educ Res 45(2):128–138

    Google Scholar 

  90. Wang C, Feng L, Yang X, Wang F, Lu W (2013) Folic acid-conjugated liposomal vincristine for multidrug resistant cancer therapy. Asian J Pharm Sci 8(2):118–127

    Article  Google Scholar 

  91. Kore G, Kolate A, Nej A, Misra A (2014) Polymeric micelle as multifunctional pharmaceutical carriers. J Nanosci Nanotechnol 14(1):288–307. https://doi.org/10.1166/jnn.2014.9021

  92. Naha PC, Davoren M, Lyng FM, Byrne HJ (2010) Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A. 1 cells. Toxicol Appl Pharmacol 246(1–2):91–99

    Article  CAS  PubMed  Google Scholar 

  93. Abdel-Rahman MA, Al-Abd AM (2013) Thermoresponsive dendrimers based on oligoethylene glycols: design, synthesis and cytotoxic activity against MCF-7 breast cancer cells. Eur J Med Chem 69:848–854

    Article  CAS  PubMed  Google Scholar 

  94. Baig T, Nayak J, Dwivedi V, Singh A, Srivastava A, Tripathi PK (2015) A review about dendrimers: synthesis, types, characterization and applications. Int J Adv Pharm Biol Chem 4(1):44–59

    CAS  Google Scholar 

  95. Malar CG (2015) Dendrosomal capsaicin nanoformulation for the invitro anticancer effect on HEp 2 and MCF-7 cell lines. Int J Appl Bioeng 9(2)

    Google Scholar 

  96. Yang Q, Yang Y, Li L, Sun W, Zhu X, Huang Y (2015) Polymeric nanomedicine for tumor-targeted combination therapy to elicit synergistic genotoxicity against prostate cancer. ACS Appl Mater Interfaces 7(12):6661–6673

    Article  CAS  PubMed  Google Scholar 

  97. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharma J 24(4):473–484

    Article  Google Scholar 

  98. Melo ISVD, Santos AFD, Lemos TLGD, Goulart MOF, Santana AEG (2015) Oncocalyxone A functions as an anti-glycation agent in vitro. PLoS One 10(6):e0131222

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barreto AC, Santiago VR, Freire RM, Mazzetto SE, Denardin JC, Mele G et al (2013) Magnetic nanosystem for cancer therapy using oncocalyxone a, an antitomour secondary metabolite isolated from a Brazilian plant. Int J Mol Sci 14(9):18269–18283

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cavalcanti IDL, Ximenes RM, Pessoa ODL, Magalhães NSS, de Britto Lira-Nogueira MC (2021) Fucoidan-coated PIBCA nanoparticles containing oncocalyxone A: activity against metastatic breast cancer cells. J Drug Deliv Sci Technol 65:102698

    Article  CAS  Google Scholar 

  101. Pessoa C, Vieira FMAC, Lemos TG, Moraes MO, Lima PDL, Rabenhorst SHB et al (2003) Oncocalyxone A from Auxemmaoncocalyx lacks genotoxic activity in phytohemagglutinin-stimulated lymphocytes. Teratog Carcinog Mutagen 23(S1):215–220

    Article  Google Scholar 

  102. Sbardelotto AB (2013) Estudo do mecanismo de citotóxicidade da oncocalixona-A emleucemiapromiolocíticahumana–linhagem HL-60

    Google Scholar 

  103. Lira MCB, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MPC, Ponchel G, Vauthier C (2011) Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 79(1):162–170

    Google Scholar 

  104. Zhang Z, Teruya K, Yoshida T, Eto H, Shirahata S (2013) Fucoidan extract enhances the anti-cancer activity of chemotherapeutic agents in MDA-MB-231 and MCF-7 breast cancer cells. Mar Drugs 11(1):81–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeyanthi Palanivelu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nandhini, R.S., Kalpana Shree, S., Maity, P., Madhumathi, G.S., Bhar, A., Palanivelu, J. (2023). Use of Plant-Derived Nanoparticles in Cancer Therapy. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_59

Download citation

Publish with us

Policies and ethics