Skip to main content

Paper-Based Triboelectric Nanogenerators

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 782 Accesses

Abstract

The emergence of Internet of things has promoted the development of the various sensors, but also brought energy issues. Triboelectric nanogenerators (TENGs) enabled by electrostatic induction and tribo-electrification are garnering substantial interest due to their cost-effective, self-powered, lightweight, facile fabrication, large output power, and high efficiency, which hold remarkable capacity in the commercialization of blue energy harvesting devices. Similarly to the fiber-based materials, paper-based TENGs (P-TENGs) hold many advantages including flexible, renewable, air-permeable, biocompatibility, and biodegradability, which make them show great potential for various energy harvesting and interactive applications. Here, different methods of paper preparation and surface modification are reported. A detailed summary of the structural design strategies of P-TENG including one-dimensional, two-dimensional, and three-dimensional patterns is given. Moreover, we introduced the application areas of P-TENG such as self-powered sensors, human-machine interaction, self-powered electrochemistry, and energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ankanahalli Shankaregowda S, Sagade Muktar Ahmed RF, Nanjegowda CB, Wang J, Guan S, Puttaswamy M, Amini A, Zhang Y, Kong D, Sannathammegowda K, Wang F, Cheng C (2019) Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 66:104141

    Article  CAS  Google Scholar 

  • Bharathraj S, Adiga SP, Mayya KS, Song T, Kim J, Sung Y (2020) Degradation-guided optimization of charging protocol for cycle life enhancement of Li-ion batteries with lithium manganese oxide-based cathodes. J Power Sources 474:228659

    Article  CAS  Google Scholar 

  • Chen J, Wang ZL (2017) Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1:480–521

    Article  CAS  Google Scholar 

  • Chen X, Pu X, Jiang T, Yu A, Xu L, Wang ZL (2017) Tunable optical modulator by coupling a triboelectric nanogenerator and a dielectric elastomer. Adv Funct Mater 27:1603788

    Article  Google Scholar 

  • Chen S, Jiang J, Xu F, Gong S (2019) Crepe cellulose paper and nitrocellulose membrane-based triboelectric nanogenerators for energy harvesting and self-powered human-machine interaction. Nano Energy 61:69–77

    Article  CAS  Google Scholar 

  • Chen G, Li Y, Bick M, Chen J (2020a) Smart textiles for electricity generation. Chem Rev 120:3668–3720

    Article  CAS  Google Scholar 

  • Chen C, Howard D, Zhang SL, Do Y, Sun S, Cheng T, Wang ZL, Abowd GD, Oh H (2020b) SPIN (Self-powered Paper Interfaces): bridging triboelectric nanogenerator with folding paper creases. In: Proceedings of the fourteenth international conference on tangible, embedded, and embodied interaction, pp 431–442

    Chapter  Google Scholar 

  • Choi Y, Sun Q, Hwang E, Lee Y, Lee S, Cho JH (2015) On-demand doping of graphene by stamping with a chemically functionalized rubber lens. ACS Nano 9:4354–4361

    Article  CAS  Google Scholar 

  • Deng W, Zhou Y, Zhao X, Zhang S, Zou Y, Xu J, Yeh MH, Guo H, Chen J (2020) Ternary electrification layered architecture for high-performance triboelectric nanogenerators. ACS Nano 14:9050–9058

    Article  CAS  Google Scholar 

  • Dudte LH, Vouga E, Tachi T, Mahadevan L (2016) Programming curvature using origami tessellations. Nat Mater 15:583–588

    Article  CAS  Google Scholar 

  • Faddoul R, Reverdy-Bruas N, Blayo A (2012) Formulation and screen printing of water based conductive flake silver pastes onto green ceramic tapes for electronic applications. Mater Sci Eng B 177:1053–1066

    Article  CAS  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energy 1:328–334

    Article  CAS  Google Scholar 

  • Fan X, Chen J, Yang J, Bai P, Li Z, Wang ZL (2015) Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9:4236–4243

    Article  CAS  Google Scholar 

  • Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G (2017) Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater 29:1603115

    Article  Google Scholar 

  • Feng Y, Zheng Y, Rahman ZU, Wang D, Zhou F, Liu W (2016) Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J Mater Chem A 4:18022–18030

    Article  CAS  Google Scholar 

  • Gao B, Chi J, Liu H, Gu Z (2017) Vertical paper analytical devices fabricated using the principles of quilling and kirigami. Sci Rep 7:7255

    Article  Google Scholar 

  • Guo H, Yeh MH, Zi Y, Wen Z, Chen J, Liu G, Hu C, Wang ZL (2017) Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems. ACS Nano 11:4475–4482

    Article  CAS  Google Scholar 

  • Guo L, Zhong C, Cao J, Hao Y, Lei M, Bi K, Sun Q, Wang ZL (2019) Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 62:513–520

    Article  CAS  Google Scholar 

  • He X, Zi Y, Yu H, Zhang SL, Wang J, Ding W, Zou H, Zhang W, Lu C, Wang ZL (2017) An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy 39:328–336

    Article  CAS  Google Scholar 

  • Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy 52:797–809

    Article  Google Scholar 

  • Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  CAS  Google Scholar 

  • Karmakar S, Kumbhakar P, Maity K, Mandal D, Kumbhakar P (2019) Development of flexible self-charging triboelectric power cell on paper for temperature and weight sensing. Nano Energy 63:103831

    Article  CAS  Google Scholar 

  • Kim H, Kim BJ, Sun Q, Kang MS, Cho JH (2016) Graphene transistors gated by salted proton conductor. Adv Electron Mater 2:1600122

    Article  Google Scholar 

  • Kim I, Jeon H, Kim D, You J, Kim D (2018) All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 53:975–981

    Article  CAS  Google Scholar 

  • Liu J, Yang C, Wu H, Lin Z, Zhang Z, Wang R, Li B, Kang F, Shi L, Wong CP (2014) Future paper based printed circuit boards for green electronics: fabrication and life cycle assessment. Energy Environ Sci 7:3674–3682

    Article  CAS  Google Scholar 

  • Liu H, Zhao G, Wu M, Liu Z, Xiang D, Wu C, Cheng Y, Wang H, Wang ZL, Li L (2019) Ionogel infiltrated paper as flexible electrode for wearable all-paper based sensors in active and passive modes. Nano Energy 66:104161

    Article  CAS  Google Scholar 

  • Mao Y, Zhang N, Tang Y, Wang M, Chao M, Liang E (2017) A paper triboelectric nanogenerator for self-powered electronic systems. Nanoscale 9:14499–14505

    Article  CAS  Google Scholar 

  • Nie S, Guo H, Lu Y, Zhuo J, Mo J, Wang ZL (2020) Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv Mater Technol 5:2000454

    Article  CAS  Google Scholar 

  • Oh H, Kwak SS, Kim B, Han E, Lim GH, Kim SW, Lim B (2019) Highly conductive ferroelectric cellulose composite papers for efficient triboelectric nanogenerators. Adv Funct Mater 29:1904066

    Article  Google Scholar 

  • Omer AM (2008) Energy, environment and sustainable development. Renew Sust Energ Rev 12:2265–2300

    Article  CAS  Google Scholar 

  • Pu S, Fu J, Liao Y, Ge L, Zhou Y, Zhang S, Zhao S, Liu X, Hu X, Liu K, Chen J (2020a) Promoting energy efficiency via a self-adaptive evaporative cooling hydrogel. Adv Mater 32:e1907307

    Article  Google Scholar 

  • Pu S, Liao Y, Chen K, Fu J, Zhang S, Ge L, Conta G, Bouzarif S, Cheng T, Hu X, Liu K, Chen J (2020b) Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting. Nano Lett 20:3791–3797

    Article  CAS  Google Scholar 

  • Shi K, Zou H, Sun B, Jiang P, He J, Huang X (2019) Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv Funct Mater 30:1904536

    Article  Google Scholar 

  • Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20:28–35

    Article  CAS  Google Scholar 

  • Singh AT, Lantigua D, Meka A, Taing S, Pandher M, Camci-Unal G (2018) Paper-based sensors: emerging themes and applications. Sensors (Basel) 18:2838

    Article  Google Scholar 

  • Sun Q, Seo S (2012) A tunable organic inverter based on groove patterned pentacene thin film transistors using soft-contact lamination. Org Electron 13:384–387

    Article  CAS  Google Scholar 

  • Sun Q, Kim J-H, Seo S (2013) External pressure responsive device based on tunable organic inverter using soft contact lamination. Org Electron 14:2401–2405

    Article  CAS  Google Scholar 

  • Wang S, Xie Y, Niu S, Lin L, Wang ZL (2014) Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 26:2818–2824

    Article  CAS  Google Scholar 

  • Wang M, Zhang N, Tang Y, Zhang H, Ning C, Tian L, Li W, Zhang J, Mao Y, Liang E (2017) Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics. J Mater Chem A 5:12252–12257

    Article  CAS  Google Scholar 

  • Wang M, Zhang J, Tang Y, Li J, Zhang B, Liang E, Mao Y, Wang X (2018) Air-flow-driven triboelectric nanogenerators for self-powered real-time respiratory monitoring. ACS Nano 12:6156–6162

    Article  CAS  Google Scholar 

  • Wang L, Zhang B, Hu Y, Li X, Zhao T (2021) Failure analysis of LiNi0·83Co0·12Mn0·05O2/graphite–SiOx pouch batteries cycled at high temperature. J Power Sources 482:228978

    Article  CAS  Google Scholar 

  • Wu C, Wang X, Lin L, Guo H, Wang ZL (2016) Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns. ACS Nano 10:4652–4659

    Article  CAS  Google Scholar 

  • Wu C, Kima TW, Sung S, Park JH, Li F (2018) Ultrasoft and cuttable paper-based triboelectric nanogenerators for mechanical energy harvesting. Nano Energy 44:279–287

    Article  CAS  Google Scholar 

  • Wu S, Li G, Liu W, Yu D, Li G, Liu X, Song Z, Wang H, Liu H (2022) Fabrication of polyethyleneimine-paper composites with improved tribopositivity for triboelectric nanogenerators. Nano Energy 93:106859

    Article  CAS  Google Scholar 

  • Xia K, Du C, Zhu Z, Wang R, Zhang H, Xu Z (2018a) Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Appl Mater Today 13:190–197

    Article  Google Scholar 

  • Xia K, Zhu Z, Zhang H, Du C, Xu Z, Wang R (2018b) Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50:571–580

    Article  CAS  Google Scholar 

  • Xia K, Zhu Z, Zhang H, Du C, Fu J, Xu Z (2019) Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 56:400–410

    Article  CAS  Google Scholar 

  • Xia L, Long T, Li W, Zhong F, Ding M, Long Y, Xu Z, Lei Y, Guan Y, Yuan D, Zhang Y, Jia C, Sun L, Sun Q (2020) Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis. Small 16:e2003321

    Article  Google Scholar 

  • Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7:7342–7351

    Article  CAS  Google Scholar 

  • Yang PK, Lin ZH, Pradel KC, Lin L, Li X, Wen X, He JH, Wang ZL (2015) Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9:901–907

    Article  CAS  Google Scholar 

  • Yang M, Tian X, Hua T (2022) Green and recyclable cellulose based TENG for sustainable energy and human-machine interactive system. Chem Eng J 442:136150

    Article  CAS  Google Scholar 

  • Zang X, Shen C, Chu Y, Li B, Wei M, Zhong J, Sanghadasa M, Lin L (2018) Laser-induced molybdenum carbide-graphene composites for 3D foldable paper electronics. Adv Mater 30:e1800062

    Article  Google Scholar 

  • Zhang W, Guo R, Sun J, Dang L, Liu Z, Lei Z, Sun Q (2019) Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth. J Colloid Interface Sci 553:705–712

    Article  CAS  Google Scholar 

  • Zhang N, Huang F, Zhao S, Lv X, Zhou Y, Xiang S, Xu S, Li Y, Chen G, Tao C, Nie Y, Chen J, Fan X (2020) Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2:1260–1269

    Article  Google Scholar 

  • Zhong Q, Zhong J, Cheng X, Yao X, Wang B, Li W, Wu N, Liu K, Hu B, Zhou J (2015) Paper-based active tactile sensor array. Adv Mater 27:7130–7136

    Article  CAS  Google Scholar 

  • Zhong W, Xu L, Wang H, An J, Wang ZL (2019) Tilting-sensitive triboelectric nanogenerators for energy harvesting from unstable/fluctuating surfaces. Adv Funct Mater 29:1905319

    Article  CAS  Google Scholar 

  • Zhou Y, Deng W, Xu J, Chen J (2020) Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep Phys Sci 1:100142

    Article  CAS  Google Scholar 

  • Zhu G, Zhou YS, Bai P, Meng XS, Jing Q, Chen J, Wang ZL (2014) A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv Mater 26:3788–3796

    Article  CAS  Google Scholar 

  • Zou J, Zhang M, Huang J, Bian J, Jie Y, Willander M, Cao X, Wang N, Wang ZL (2018) Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor. Adv Energy Mater 8:1702671

    Article  Google Scholar 

  • Zou Y, Libanori A, Xu J, Nashalian A, Chen J (2020) Triboelectric nanogenerator enabled smart shoes for wearable electricity generation. Research (Wash D C) 2020:7158953

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, J. (2023). Paper-Based Triboelectric Nanogenerators. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_26

Download citation

Publish with us

Policies and ethics