Skip to main content

Photocatalytic Degradation of Organic Pollutants and Airborne Pathogen in Air

  • Chapter
  • First Online:
Photocatalysis for Environmental Remediation and Energy Production

Abstract

According to World Health Organization, air pollution kills millions of people worldwide every year. In addition, several epidemiological findings have uncovered the impacts of air pollution on respiratory and cardiovascular systems. This chapter presents current knowledge of human health concerns caused by volatile organic compounds (VOCs) and biological contaminants. These contaminants contribute to air pollutants that impair all environmental elements. Heterogeneous photocatalytic processes using semiconductor photocatalyst would serve as a promising technology and an efficient approach for removing VOCs and airborne pathogens. Considering the potentially toxic effect of these air pollutants, emerging mitigation approaches such as the photocatalysis process are explained elaborately in this chapter, including fundamental principles of photocatalysis, reaction mechanism, reaction kinetics, and photoreactor designs suitable for air purification. Furthermore, the photocatalytic process as a paradigm explores existing techniques utilized in research and commercial applications. Significant efforts have been made to include information from worldwide sources for this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO (2022) “WHO.” Web page accessed on March 29th, https://www.who.int/health-topics/air-pollution#tab=tab_1

  2. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 14

    Google Scholar 

  3. Brown SK, Sim MR, Abramson MJ, Gray CN (1994) Concentrations of volatile organic compounds in indoor air–a review. Indoor Air 4(2):123–134

    Article  CAS  Google Scholar 

  4. Wang S, Ang HM, Tade MO (2007) Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art. Environ Int 33(5):694–705

    Article  CAS  PubMed  Google Scholar 

  5. Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK (2014) Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ Sci Pollut Res 21(3):2240–2248

    Article  CAS  Google Scholar 

  6. Molhave L, Clausen G, Berglund B, De Ceaurriz J, Kettrup A, Lindvall T, Younes M (1997) Total volatile organic compounds (TVOC) in indoor air quality investigations. Indoor Air 7(4):225–240

    Article  CAS  Google Scholar 

  7. USEPA site accessed on March 29th, 2022. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM

  8. Wilson WE, Suh HH (1997) Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J Air Waste Manag Assoc 47(12):1238–1249

    Article  CAS  PubMed  Google Scholar 

  9. Caruana DJ (2011) Detection and analysis of airborne particles of biological origin: present and future. Analyst 136(22):4641–4652

    Article  CAS  PubMed  Google Scholar 

  10. Humbal C, Gautam S, Trivedi U (2018) A review on recent progress in observations, and health effects of bioaerosols. Environ Int 118:189–193

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh B, Lal H, Srivastava A (2015) Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ Int 85:254–272

    Article  PubMed  PubMed Central  Google Scholar 

  12. Samake A, Uzu G, Martins JMF, Calas A, Vince E, Parat S, Jaffrezo JL (2017) The unexpected role of bioaerosols in the oxidative potential of PM. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  13. Valdez-Castillo M, Saucedo-Lucero JO, Villalobos-Romero KL, PérezRodriguez F, Arriaga S (2021) Steady-state operation of a biofilter coupled with photocatalytic control of bacterial bioaerosol emissions. Environ Sci Pollut Res 28(11):13970–13980

    Article  CAS  Google Scholar 

  14. Noorimotlagh Z, Jaafarzadeh N, Martínez SS, Mirzaee SA (2020) A systematic review of possible airborne transmission of the COVID-19 Virus (SARS-CoV-2) in the indoor air environment. Environ Res 193:110612

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bowers RM, Mccubbin IB, Hallar AG, Fierer N (2012) Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ 50:41–49

    Article  CAS  Google Scholar 

  16. Gandolfi I, Bertolini V, Ambrosini R, Bestetti G, Franzetti A (2013) Unravelling the bacterial diversity in the atmosphere. Appl Microbiol Biotechnol 97(11):4727–4736

    Article  CAS  PubMed  Google Scholar 

  17. Shammi M, Rahman MM, Tareq SM (2021) Distribution of bioaerosols in association with particulate matter: a review on emerging public health threat in Asian megacities. Front Environ Sci 328

    Google Scholar 

  18. Yan X, Qiu D, Zheng S, Yang J, Sun H, Wei Y et al (2019) Distribution characteristics and noncarcinogenic risk assessment of culturable airborne bacteria and fungi during winter in Xinxiang, China. Environ Sci Pollut Res 26(36):36698–36709

    Article  CAS  Google Scholar 

  19. Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ (2007) Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 17:305–316

    Article  CAS  PubMed  Google Scholar 

  20. Sirivallop A, Escobedo S, Areerob T, de Lasa H, Chiarakorn S (2021) Photocatalytic conversion of organic pollutants in air: quantum yields using a Silver/Nitrogen/TiO2 mesoporous semiconductor under visible light. Catalysts 11(5):529

    Article  CAS  Google Scholar 

  21. Yu QL, Ballari MM, Brouwers HJH (2010) Indoor air purification using heterogeneous photocatalytic oxidation. Part II: kinetic study. Appl Catal B: Environ 99(1–2):58–65

    Google Scholar 

  22. Huang Y, Ho SSH, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21(1):56

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang H, Lu H, Huang H, Wang L, Zhang J, Leung DYC (2016) Recent development of VUV-based processes for air pollutants degradation. Front Environ Sci 4:1–13

    Article  Google Scholar 

  24. Raso RA, Zeltner M, Stark WJ (2014) Indoor air purification using activated carbon adsorbers: regeneration using catalytic combustion of intermediately stored VOC. Ind Eng Chem Res 53:19304–19312

    Article  CAS  Google Scholar 

  25. Bianchi CL, Gatto S, Pirola C, Naldoni A, Di Michele A, Cerrato G, Crocellà V, Capucci V (2014) Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO2. Appl Catal B: Environ 146(2014):123–130

    Google Scholar 

  26. Das J, Rene ER, Krishnan J (2018) Photocatalytic degradation of volatile pollutants. J Environ Chem Toxicol 2(2):57–59

    Google Scholar 

  27. Aliabadi AA, Rogak SN, Bartlett KH, Green SI (2011) Preventing airborne disease transmission: review of methods for ventilation design in health care facilities. Adv Prevent Med 2011

    Google Scholar 

  28. HEPACART, 2022 accessed on March 29th, 2022, https://www.hepacart.com/blog/4-ways-to-destroy-airborne-pathogens-in-public-spaces

  29. Poormohammadi A, Bashirian S, Rahmani AR, Azarian G, Mehri F (2021) Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review. Environ Sci Pollut Res 28(32):43007–43020

    Article  CAS  Google Scholar 

  30. Lin L, Chai Y, Zhao B et al (2013) Photocatalytic oxidation for degradation of VOCs. Open J Inorg Chem 3:14–25

    Article  CAS  Google Scholar 

  31. Mo J, Zhang Y, Xu Q et al (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  32. Yu QL, Brouwers HJH (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B: Environ 92(3–4):454–461

    Google Scholar 

  33. Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38(5):645–654

    Article  Google Scholar 

  34. Chowdhury P (2012) Solar and visible light driven photocatalysis for sacrificial hydrogen generation and water detoxification with chemically modified TiO2. Electronic Thesis and Dissertation Repository, 702

    Google Scholar 

  35. Hashim N, Natarajan P, Ray AK (2014) Intrinsic kinetic study for photocatalytic degradation of diclofenac under UV and visible light. Ind Eng Chem Res 53:18637–18646

    Article  CAS  Google Scholar 

  36. Passalia C, Alfano OM, Brandi RJ (2017) Integral design methodology of photocatalytic reactors for air pollution remediation. Molecules 22(6):945

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen D, Sivakumar M, Ray AK (2000) Heterogeneous photocatalysis in environmental remediation. Dev Chem Eng Miner Process 8(5–6):505–550

    Google Scholar 

  38. Chowdhury P, Elkamel A, Ray AK (2014) Photocatalytic processes for the removal of toxic metal ions. In: Heavy metals in water: presence, removal and safety, pp 25–43

    Google Scholar 

  39. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  40. Chowdhury P, Elkamel A, Ray AK (2015) Photocatalytic processes for the removal of dye. In: Green chemistry for dyes removal from wastewater: research trends and applications, pp 119–137

    Google Scholar 

  41. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics, and recent advances. Appl Catal B 225:51–75

    Article  CAS  Google Scholar 

  42. Monllor-Satoca D, Gómez R, González-Hidalgo M, Salvador P (2007) The “Direct–Indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129(1–2):247–255

    Article  CAS  Google Scholar 

  43. Sharmin R, Ray MB (2012) Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air. J Air Waste Manag Assoc 62:1032–1039

    Article  CAS  PubMed  Google Scholar 

  44. Yao P, Liu H, Wang D, Chen J, Li G, An T (2018) Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of Titania confined inside a metal-organic framework. J Colloid Interface Sci 522:174–182

    Article  CAS  PubMed  Google Scholar 

  45. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobio 9(1):1–12

    Google Scholar 

  46. Gorvel L, Yver M, Robert E, Harmant M, Rosa‐Calatrava M, Lina B, Gaüzère C et al (2014) Innovative germicidal UV and photocatalytic system dedicated to aircraft cabin eliminates volatile organic compounds and pathogenic micro‐organisms. CLEAN–Soil, Air, Water 42(6):703–712

    Google Scholar 

  47. Daikoku T, Takemoto M, Yoshida Y, Okuda T, Takahashi Y, Ota K, Tokuoka F, Kawaguchi AT, Shiraki K (2015) Decomposition of organic chemicals in the air and inactivation of aerosol-associated influenza infectivity by photocatalysis. Aerosol Air Qual Res 15(4):1469–1484

    Google Scholar 

  48. Birnie M, Riffat S, Gillott M (2021) Photocatalytic reactors: design for effective air purification. Int J Low-Carbon Technol 1(1):47–58

    Article  Google Scholar 

  49. Degefu DM, Liao Z (2021) Photocatalytic degradation of volatile organic compounds using nanocomposite of p-type and n-type transition metal semiconductors. J Sol-Gel Sci Technol 98:605–614

    Article  CAS  Google Scholar 

  50. Assadi AA, Bouzaza A, Wolbert D (2016) Kinetic modeling of VOC photocatalytic degradation using a process at different reactor configurations and scales. Int J Chem Reactor Eng 14(1):395–405

    Google Scholar 

  51. Kozlov DV, Vorontsov AV (2011) Development of multi-stage photocatalytic reactors for air purification. Chem Sustain Dev 19(1):61–70

    Google Scholar 

  52. Ren H, Koshy P, Chen WF, Qi S, Sorrell CC (2017) Photocatalytic materials and technologies for air purification. J Hazard Mater 325:340–366

    Article  CAS  PubMed  Google Scholar 

  53. Brandi RJ, Rintoul G, Alfano OM, Cassano AE (2002) Photocatalytic reactors: reaction kinetics in a flat plate solar simulator. Catal Today 76(2–4):161–175

    Article  CAS  Google Scholar 

  54. Hay SO, Obee T, Luo Z, Jiang T, Meng Y, He J, Murphy SC, Suib S (2015) The viability of photocatalysis for air purification. Molecules 20(1):1319–1356

    Article  PubMed  PubMed Central  Google Scholar 

  55. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214

    Article  CAS  Google Scholar 

  56. Sjogren JC, Sierka RA (1994) Inactivation of phage MS2 by iron-aided titanium dioxide photocatalysis. Appl Environ Microbiol 60(1):344–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ahmadi Y, Bhardwaj N, Kim KH, Kumar S (2021) Recent advances in photocatalytic removal of airborne pathogens in air. Sci Total Environ 794:148477

    Article  CAS  PubMed  Google Scholar 

  58. Kim KH, Kabir E, Jahan SA (2018) Airborne bioaerosols and their impact on human health. J Environ Sci 67:23–35

    Article  CAS  Google Scholar 

  59. Paspaltsis I, Kotta K, Lagoudaki R, Grigoriadis N, Poulios I, Sklaviadis T (2006) Titanium dioxide photocatalytic inactivation of prions. J Gen Virol 87(10):3125–3130

    Article  CAS  PubMed  Google Scholar 

  60. Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281

    Article  CAS  PubMed  Google Scholar 

  61. Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Möhwald H, Sviridov DV (2008) Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl Catal B 84(1–2):94–99

    Article  CAS  Google Scholar 

  62. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pal A, Pehkonen SO, Yu LE, Ray MB (2008) Photocatalytic inactivation of airborne bacteria in a continuous-flow reactor. Ind Eng Chem Res 47(20):7580–7585

    Article  CAS  Google Scholar 

  64. Sato T, Koizumi Y, Taya M (2003) Photocatalytic deactivation of airborne microbial cells on TiO2-loaded plate. Biochem Eng J 14(2):149–152

    Article  CAS  Google Scholar 

  65. Li C-CT, Lai H-H, Chan C-W (2003) Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila. Aerosol Sci Technol 37:961–966

    Article  CAS  Google Scholar 

  66. Lin CY, Li CS (2003) Effectiveness of titanium dioxide photocatalyst filters for controlling bioaerosols. Aerosol Sci Technol 37(2):162–170

    Article  CAS  Google Scholar 

  67. Nakano R, Ishiguro H, Yao Y, Kajioka J, Fujishima A, Sunada K, Kubota Y (2012) Photocatalytic inactivation of influenza virus by titanium dioxide thin film. Photochem Photobiol Sci 11(8):1293–1298

    Google Scholar 

  68. Habibi-Yangjeh A, Asadzadeh-Khaneghah S, Feizpoor S, Rouhi A (2020) Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses? J Colloid Interface Sci 580:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi SY, Cho B (2018) Extermination of influenza virus H1N1 by a new visible-light-induced photocatalyst under fluorescent light. Virus Res 248:71–73

    Article  CAS  PubMed  Google Scholar 

  70. Zhang C, Li Y, Shuai D, Shen Y, Wang D (2019) Progress and challenges in photocatalytic disinfection of waterborne viruses: a review to fill current knowledge gaps. Chem Eng J 355:399–415

    Article  CAS  Google Scholar 

  71. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  72. Podporska-Carroll J, Panaitescu E, Quilty B, Wang L, Menon L, Pillai SC (2015) Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl Catal B 176:70–75

    Article  Google Scholar 

  73. Sato T, Taya M (2006) Copper-aided photo sterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp. Biochem Eng J 30(2):199–204

    Article  CAS  Google Scholar 

  74. Saito T, Iwase T, Horie J, Morioka T (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol, B 14(4):369–379

    Article  CAS  PubMed  Google Scholar 

  75. Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Orrantia-Borunda E, Solıs FJ (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photochem Photobiol, B 70(1):45–50

    Article  CAS  PubMed  Google Scholar 

  77. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catal B Environ 98:27–38

    Article  CAS  Google Scholar 

  78. Fagan R, McCormack DE, Dionysiou DD, Pillai SC (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins, and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14

    Article  CAS  Google Scholar 

  79. Martínez Vimbert R, Arañó Loyo M, Custodio Sánchez JD, García Raurich J, Monagas Asensio P (2020) Evidence of OH· radicals disinfecting indoor air and surfaces in a harmless for humans method. Int J Eng Res Sci (IJOER) 6(4):26–38

    Google Scholar 

  80. Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21(10):4631–4641

    Article  CAS  PubMed  Google Scholar 

  81. French RA, Jacobson AR, Kim B, Isley SL, Penn L, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359

    Article  CAS  PubMed  Google Scholar 

  82. Bai M, Zhang Z, Tian Y, Bai M (2012) Rapidly eliminating pathogenic microorganisms in large air space using spraying OH radicals. J Air Waste Manag 62:393–397

    Article  CAS  Google Scholar 

  83. Matai I, Sachdev A, Dubey P, Kumar SU, Bhushan B, Gopinath P (2014) Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf, B 115:359–367

    Article  CAS  Google Scholar 

  84. Cho M, Chung H, Yoon J (2003) Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl Environ Microbiol 69(4):2284–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gyurek LL, Finch GR (1998) Modeling water treatment chemical disinfection kinetics. J Environ Eng 124(9):783–793

    Article  CAS  Google Scholar 

  86. Marugán J, Van Grieken R, Pablos C, Satuf ML, Cassano AE, Alfano OM (2011) Rigorous kinetic modelling with explicit radiation absorption effects of the photocatalytic inactivation of bacteria in water using suspended titanium dioxide. Appl Catal B 102(3–4):404–416

    Article  Google Scholar 

  87. Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321(1–3):21–46

    Article  CAS  PubMed  Google Scholar 

  88. Lu S, Meng G, Wang C, Chen H (2021) Photocatalytic inactivation of airborne bacteria in a polyurethane foam reactor loaded with a hybrid of MXene and anatase TiO2 exposing 001 facets. Chem Eng J 404:126526

    Article  CAS  PubMed  Google Scholar 

  89. Shiraki K, Yamada H, Yoshida Y, Ohno A, Watanabe T, Watanabe T, Adachi N et al (2017) Improved photocatalytic air cleaner with decomposition of aldehyde and aerosol-associated influenza virus infectivity in indoor air. Aerosol Air Qual Res 17(11):2901–2912

    Google Scholar 

  90. Doss N, Carré G, Keller V, Andre P, Keller N (2018) Photocatalytic decontamination of airborne T2 bacteriophage viruses in a small-size TiO2/β-SiC alveolar foam LED reactor. Water Air Soil Pollut 229(2):1–11

    Article  CAS  Google Scholar 

  91. Kim J, Jang J (2018) Inactivation of airborne viruses using vacuum ultraviolet photocatalysis for a flow-through indoor air purifier with short irradiation time. Aerosol Sci Technol 52(5):557–566

    Article  CAS  Google Scholar 

  92. AirOasis, 2022, accessed on March 29th, 2022 https://www.airoasis.com/products/iadaptair?variant=41664708083879

  93. GENESIS AIR, 2022, accessed on March 29th, 2022 https://highmark.co/technologies/genesis-air-photocatalytic-oxidation-pco-air-purifiers/

  94. Platinum Air Care, 2022, accessed on March 29th, 2022 https://www.platinumaircare.ca/air-purifiers/portable/rps-600s-air-purifier-system

  95. CASPR, 2022 accessed on March 29th, 2022 https://cdn.shopify.com/s/files/1/0262/8773/4830/files/CASPR_In_Duct_Units_Overview.pdf?v=1612275830

  96. AirPura, 2022, accessed on March 29th, 2022 https://www.airpura.com/products/p600-germs-mold-and-chemicals-reduction

  97. PureAir, 2022 accessed on March 29th, 2022. https://climatisationbs.com/uploads/defcpls/caissons_filtres/lennox/lennox-pureair-en-manuel.pdf

  98. Airocide, 2022, accessed on March 29th, 2022 https://www.airocidehd.com/resources/tio2-uvc-technology-case-study/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chowdhury, P., Hashim, N., Ray, A.K. (2023). Photocatalytic Degradation of Organic Pollutants and Airborne Pathogen in Air. In: Garg, S., Chandra, A. (eds) Photocatalysis for Environmental Remediation and Energy Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-27707-8_8

Download citation

Publish with us

Policies and ethics