Skip to main content

Advertisement

Log in

Distribution characteristics and noncarcinogenic risk assessment of culturable airborne bacteria and fungi during winter in Xinxiang, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bioaerosols are an important component of particulate matter in the atmosphere and are harmful to human health. In this study, the concentration, size distribution, and factors influencing culturable airborne bacteria and fungi in the atmosphere were investigated using a six-stage impactor device in the city of Xinxiang, China, during the winter season. The results revealed that the concentration of culturable airborne bacteria and fungi varied significantly during the sampling period: 4595 ± 3410 and 6358 ± 5032 CFU/m3, respectively. The particle sizes of the bioaerosols were mainly within stage V (1.1–2.1 μm), and fine particulate matter accounted for 45.9% ± 18.9% of airborne bacteria and 52.0% ± 18.5% of airborne fungi, respectively. With the deterioration of air quality, the concentration of airborne fungi gradually increased, and that of airborne bacteria increased when the air quality index was lower than 200 and decreased when it was higher than 200. With respect to the diurnal variation pattern of bioaerosol concentration, the highest and lowest concentrations were registered at night and noon, respectively, probably because of changes in ultraviolet radiation intensity. Bioaerosol concentration positively correlated with humidity, concentration of PM2.5, PM10, SO2, and NO2 and negatively correlated with O3 concentration. The risk of exposure of humans to the airborne bacteria was primarily associated with the respiratory inhalation pathway, and the risk of skin exposure was negligible. These results should improve our understanding of the threat of bioaerosols to public health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Rojas TI (2014) Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters. Int J Biometeorol 58(7):1459–1470

    Google Scholar 

  • Andersen AA (1958) New sampler for the collection, sizing, and enumeration of viable airborne particles. J Bacterial 76(5):471–484

    CAS  Google Scholar 

  • Ariya PA, Amyot M (2004) New directions: the role of bioaerosols in atmospheric chemistry and physics. Atmos Environ 38:1231–1232

    CAS  Google Scholar 

  • Bragoszewska E, Pastuszka JS (2018) Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34(2):241–255

    Google Scholar 

  • Burrows SM, Elbert W, Lawrence MG, Poschl U (2009) Bacteria in the global atmosphere – Part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280

    CAS  Google Scholar 

  • Chen GH, Song GX, Jiang LL, Zhang YH, Zhao NQ, Chen BH, Kan HD (2008) Short-term effects of ambient gaseous pollutants and particulate matter on daily mortality in Shanghai, China. J Occup Health 50(1):41–47

    CAS  Google Scholar 

  • Chen XY, Ran PX, Ho KF, Lu WJ, Li B, Gu ZP, Song CJ, Wang J (2012) Concentrations and size distributions of airborne microorganisms in Guangzhou during summer. Aerosol Air Qual Res 12:1336–1344

    Google Scholar 

  • Cox CS (1995) Stability of airborne microbes and allergens. In: Cox CS, Wathes CM (eds) Bioaerosols Handbook. Lewis Publishers New York, pp 77–99

  • Cox CS, Hood AM, Baxter J (1973) Method for comparing concentrations of the open-air factor. Appl Microbiol 26(4):640–642

    CAS  Google Scholar 

  • Després V, Huffman J, Burrows S, Hoose C, Safatov A, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae M, Pöschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64(1):145–153

    Google Scholar 

  • Dong LJ, Qi JH, Shao CC, Zhong X, Gao DM, Cao WW, Gao JW, Bai R, Long GY, Chu CC (2016) Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci Total Environ 541:1011–1018

    CAS  Google Scholar 

  • Douwes J, Thorne P, Pearce N, Heederik D (2003) Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg 47(3):187–200

    CAS  Google Scholar 

  • Du PR, Du R, Ren WS, Lu ZD, Zhang Y, Fu PQ (2018a) Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmos Environ 172:55–64

    CAS  Google Scholar 

  • Du PR, Du R, Lu ZD, Ren WS, Fu PQ (2018b) Variation of bacterial and fungal community structures in PM2.5 collected during the 2014 APEC summit periods. Aerosol Air Qual Res 18(2):444–455

    CAS  Google Scholar 

  • Dybwad M, Skogan G, JM BB (2014) Temporal variability of the bioaerosol background at a subway station: concentration level, size distribution, and diversity of airborne bacteria. Appl Environ Microb 80(1):257–270

    CAS  Google Scholar 

  • Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, Bellander T, Cesaroni G, Cirach M, Cyrys J, de Hoogh K, Nazelle AD, de Vocht F, Declercq C, Dedele A, Eriksen K, Galassi C, Grazuleviciene R, Grivas G, Hoek G (2012) Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 - Results of the ESCAPE project. Atmos Environ 62(12):303–317

    CAS  Google Scholar 

  • Fan CL, Li YP, Liu PX, Mu FF, Xie ZS, Lu R, Qi YZ, Wang BB, Jin C (2019) Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi'an, China. Sci Total Environ 672:834–845

    CAS  Google Scholar 

  • Fang ZG, Yao WC, Lou XQ, Hao CM, Gong CJ, Ouyang ZY (2016) Profile and characteristics of culturable airborne bacteria in Hangzhou, southeast of China. Aerosol Air Qual Res 16(7):1690–1700

    CAS  Google Scholar 

  • Frohlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pohlker C, Andreae MO, Lang-Yona N, Burrows SM, Gunthe SS, Elbert W, Su H, Hoor P, Thines E, Hoffmann T, Despres VR, Poschl U (2016) Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos Res 182:346–376

    Google Scholar 

  • Fröhlichnowoisky J, Ruzene Nespoli C, Pickersgill DA, Galand PE, MüllergermannI NT (2014) Diversity and seasonal dynamics of airborne archaea. Biogeosciences 11:6067–6079

    Google Scholar 

  • Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and belowa tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10:4453–4466

    CAS  Google Scholar 

  • Gao M, Jia RZ, Qiu TL, Han ML, Song Y, Wang XM (2015a) Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmos Environ 118:203–210

    CAS  Google Scholar 

  • Gao M, Qiu TL, Jia RZ, Han ML, Song Y, Wang XM (2015b) Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing. Environ Sci Pollut R 22(6):4359–4368

    CAS  Google Scholar 

  • Gao M, Yan X, Qiu TL, Han ML, Wang XM (2016) Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos Environ 128:10–19

    CAS  Google Scholar 

  • Grinn-Gofron A, Strzelczak A, Wolski T (2011) The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores. Environ Pollut 159(2):602–608

    CAS  Google Scholar 

  • HJ 633-2012 (2012) Technical regulation on ambient air quality index (on trial). Ministry of Ecology and Environment of the People’s Republic of China. http://kjs.mee.gov.cn/hjbhbz/bzwb/jcffbz/201203/t20120302_224166.shtml. Accessed 10 May 2018.

  • HMS (2018) Henan Meteorological Service. http://henan.weather.com.cn/xinxiang/index.shtml. Accessed 24 July 2019

  • Hoeksma P, Aarnink AJA, Venglovsky J, Gregová G., Čornejová T (2015) Effects of temperature and relative humidity on the survival of airborne bacteria

  • Hwang GB, Jung JH, Jeong TG, Lee BU (2010) Effect of hybrid UV-thermal energy stimuli on inactivation of S. epidermidis and B. subtilis bacterial bioaerosols. Sci Total Environ 408(23):5903–5909

    CAS  Google Scholar 

  • Jones AM, Harrison RM (2004) The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Sci Total Environ 326(1-3):151–180

    CAS  Google Scholar 

  • Jo WK, Kang JH (2006) Workplace exposure to bioaerosols in pet shops, pet clinics, and flower gardens. Chemosphere 65(10):1755–1761

    CAS  Google Scholar 

  • Kawanaka Y, Tsuchiya Y, Yun SJ, Sakamoto K (2009) Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition. Environ Sci Technol 43(17):6851–6856

    CAS  Google Scholar 

  • Kethley TW, Fincher EL, Cown WB (1957) The effect of sampling method upon the apparent response of airborne bacteria to temperature and relative humidity. J Infect Dis 100(1):97–102

    CAS  Google Scholar 

  • Kulmala M, Laakso L, Lehtinen KEJ, Riipinen I, Dal Maso M, Anttila T, Kerminen VM, Hõrrak U, VanaM TH (2004) Initial steps of aerosol growth. Atmos Chem Phys 4(11–12):2553–2560

    CAS  Google Scholar 

  • Latif MT, Othman M, Idris N, Juneng L, Abdullah AM, Hamzah W, Khan MF, Sulaiman NMN, Jewaratnam J, Aghamohammadi N, Sahani M, Xiang CJ, Ahamad F, Amil N, Darus M, Varkkey H, Tangang F, Jaafar A (2018) Impact of regional haze towards air quality in Malaysia: a review. Atmos Environ 177:28–44

    CAS  Google Scholar 

  • Lai SC, Ho KF, Zhang YY, Lee SC, Huang Y, Zou SC (2010) Characteristics of residential indoor carbonaceous aerosols: a case study in Guangzhou, Pearl River Delta Region. Aerosol Air Qual Res 10:472–478

    CAS  Google Scholar 

  • Lee BU, Lee G, Heo KJ (2016) Concentration of culturable bioaerosols during winter. J Aerosol Sci 94:1–8

    Google Scholar 

  • Li MF, Qi JH, Zhang HD, Zhang S, Li L, Gao DM (2011) Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region. Sci Total Environ 409(19):3812–3819

    CAS  Google Scholar 

  • Li YP, Fu HL, Wang W, Liu J, Meng QL, Wang WK (2015) Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China. Atmos Environ 122:439–447

    CAS  Google Scholar 

  • Li YP, Lu R, Li WX, Xie ZS, Song Y (2017) Concentrations and size distributions of viable bioaerosols under various weather conditions in a typical semi-arid city of Northwest China. J Aerosol Sci 106:83–92

    CAS  Google Scholar 

  • Li YP, Zhang HF, Qiu XH, Zhang YR, Wang HR (2013) Dispersion and risk assessment of bacterial aerosols emitted from rotating-brush aerator during summer in a wastewater treatment plant of Xi’an, China. Aerosol Air Qual Res 13:1807–1814

    Google Scholar 

  • Lu R, Li YP, Li WX, Xie ZS, Fan CL, Liu PX, Deng SX (2018) Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Sci Total Environ 637(638):244–252

    Google Scholar 

  • Macher JM, Huang FY, Flores M (1991) A two-year study of microbiological indoor air quality in a new apartment. Arch Environ Health 46(1):25–29

    CAS  Google Scholar 

  • Ministry of Ecology and Environment of the People's Republic of China (2017) http://www.mee.gov.cn/gkml/hbb/bwj/201708/t20170831_420711.htm. Accessed 10 Nov 2017

  • Ministry of Ecology and Environment of the People's Republic of China (2018). Data service. http://www.mee.gov.cn/. Accessed 10 May 2018

  • Nasir ZA, Colbeck I, Sultan S, Ahmed S (2012) Bioaerosols in residential microenvironments in low income countries: a case study from Pakistan. Environ Pollut 168:15–22

    CAS  Google Scholar 

  • Pakulski JD, Baldwin A, Dean AL, Durkin S, KarentZD KCA, Scott K, Spero HJ, WilhelM SW, Amin R, Jeffrey WH (2007) Responses of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. Aquat Microb Ecol 47(2):153–162

    CAS  Google Scholar 

  • Pasanen AL, Pasanen P, Jantunen MJ, Kalliokoski P (1991) Significance of air humidity and air velocity for fungal spore release into the air. Atmos Environ Part A 25(2):459–462

    Google Scholar 

  • Qi JH, Shao Q, Xu WB, Gao DM, Jin C (2014) Seasonal distribution of bioaerosols in the coastal region of Qingdao. J Ocean U China 13(1):57–65

    CAS  Google Scholar 

  • Shaffer BT, Lighthart B (1997) Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microb Ecol 34:167–177

    CAS  Google Scholar 

  • Shi CN, Yuan RM, Wu BW, Meng YJ, Zhang H, Zhang HQ, Gong ZQ (2018) Meteorological conditions conducive to PM2.5 pollution in winter 2016/2017 in the Western Yangtze River Delta, China. Sci Total Environ 642:1221–1232

    CAS  Google Scholar 

  • Smets W, Moretti S, Denys S, Lebeer S (2016) Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmos Environ 139:214–221

    CAS  Google Scholar 

  • Sun ZQ, Mu YJ, Liu YJ, Shao LY (2013) A comparison study on airborne particles during haze days and non-haze days in Beijing. Sci Total Environ 456(7):1–8

    Google Scholar 

  • Sun YL, Zhuang GS, Tang AH, Wang Y, An ZS (2006) Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ Sci Technol 40(10):3148–3155

    CAS  Google Scholar 

  • Tao Y, Mi SQ, Zhou SH, Wang SG, Xie XY (2014) Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environ Pollut 185:196–201

    CAS  Google Scholar 

  • Theunissen HJ, Lemmens-den Toom NA, Burggraaf A, Stolz E, Michel MF (1993) Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl Environ Microb 59(8):2589–2593

    CAS  Google Scholar 

  • Timo K (1997) The number of Cladosporium conidia in the air in different weather conditions. Grana 36(1):54–61

    Google Scholar 

  • Tong YY, Lighthart B (1997) Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere. Photochem Photobiol 65(1):103–106

    CAS  Google Scholar 

  • Walser SM, Gerstner DG, Brenner B, Bunger J, Eikmann T, Janssen B, Kolb S, Kolk A, Nowak D, Raulf M, Sagunski H, Sedlmaier N, Suchenwirth R, Wiesmuller G, Wollin KM, Tesseraux I, Herr CEW (2015) Evaluation of exposure–response relationships for health effects of microbial bioaerosols - a systematic review. Int J Hyg Environ Health 218(7):557–589

    Google Scholar 

  • Webb SJ, Dumasia MD (1968) An infrared study of the influence of growth media and myo-inositol on structural changes in DNA induced by dehydration and ultraviolet light. Can J Microbiol 14(8):841–852

    CAS  Google Scholar 

  • Wei K, Zheng YH, Li J, Shen FX, Zou ZL, Fan HQ, Li XY, Wu CY, Yao MS (2015) Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions. Sci Bull 60(16):1439–1447

    CAS  Google Scholar 

  • Wei K, Zou ZL, Zheng YH, Li J, Shen FX, Wu CY, Wu YS, Hu M, Yao MS (2016) Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci Total Environ 550:751–759

    CAS  Google Scholar 

  • WHO (2005) Air quality guidelines-global update world. Health Organization Regional Office, Copenhagen

    Google Scholar 

  • Wu B, Meng K, Wei LM, Cai YM, Chai TJ (2017) Seasonal fluctuations of microbial aerosol in live poultry markets and the detection of endotoxin. Front Microbiol 8:1–8

    Google Scholar 

  • Xie ZS, Fan CL, Lu R, Liu PX, Wang BB, Du SL, Jin C, Deng SX, Li YP (2018a) Characteristics of ambient bioaerosols during haze episodes in China: a review. Environ Pollut 243:1930–1942

    CAS  Google Scholar 

  • Xie ZS, Li YP, Lu R, Li WX, Fan CL, Liu PX, Wang JL, Wang WK (2018b) Characteristics of total airborne microbes at various air quality levels. J Aerosol Sci 116:57–65

    CAS  Google Scholar 

  • XEPB (2016) Xinxiang Environmental Protection Bureau. The yearbook of environmental quality of Xinxiang, 2016. http://www.xxhb.gov.cn/news/58_11502. Accessed 24 July 2019

  • XEPB (2017) Xinxiang Environmental Protection Bureau. The yearbook of environmental quality of Xinxiang, 2017. http://www.xxhb.gov.cn/news/58_13553. Accessed 24 July 2019

  • XEPB (2018) Xinxiang Environmental Protection Bureau. The yearbook of environmental quality of Xinxiang, 2018. http://www.xxhb.gov.cn/news/58_15135. Accessed 24 July 2019

  • Xu WZ, Chen H, Li DH, Zhao FS, Yang Y (2013) A case study of aerosol characteristics during a haze episode over Beijing. Procedia Environ Sci 18:404–411

    CAS  Google Scholar 

  • Xu ZQ, Wu Y, Shen FX, Chen Q, Tan MM, Yao MS (2011) Bioaerosol science, technology, and engineering: past, present, and future. Aerosol Sci Technol 45(11):1337–1349

    CAS  Google Scholar 

  • Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW, Peccia J (2012) Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. Isme J 6(10):1801–1811

    CAS  Google Scholar 

  • Zhai YB, Li X, Wang TF, Wang B, Li CT, Zeng GM (2018) A review on airborne microorganisms in particulate matters: composition, characteristics and influence factors. Environ Int 113:74–90

    Google Scholar 

  • Zhang Z, Zhang X, Gong D, Kim SJ, Mao R, Zhao X (2016) Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China. Atmos Chem Phys 16(2):561–571

    Google Scholar 

  • Zhen Q, Deng Y, Wang Y, Wang X, Zhang H, Sun X, Ouyang Z (2017) Meteorological factors had more impact on airborne bacterial communities than air pollutants. Sci Total Environ 601(602):703–712

    Google Scholar 

  • Zhong X, Qi JH, Li HT, Dong LJ, Gao DM (2016) Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region. Atmos Environ 140:506–513

    CAS  Google Scholar 

  • Zhou YF (1988) Xinxiangshi. Guangming Daily Press, Beijing (in Chinese)

    Google Scholar 

  • Zhuang XL, Wang YS, He H, Liu JG, Wang XM, Zhu TY, Ge MF, Zhou J, Tang GQ, Ma JZ (2014) Haze insights and mitigation in China: an overview. J Environ Sci-China 26(1):2–12

    CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (No. 51408199) and the Natural Science Foundation of Henan Province of China (No. 182300410157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yan.

Additional information

Responsible Editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Qiu, D., Zheng, S. et al. Distribution characteristics and noncarcinogenic risk assessment of culturable airborne bacteria and fungi during winter in Xinxiang, China. Environ Sci Pollut Res 26, 36698–36709 (2019). https://doi.org/10.1007/s11356-019-06720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06720-8

Keywords

Navigation