Skip to main content

k-Transmitter Watchman Routes

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2023)

Abstract

We consider the watchman route problem for a k-transmitter watchman: standing at point p in a polygon P, the watchman can see \(q\in P\) if \(\overline{pq}\) intersects P’s boundary at most k times—q is k-visible to p. Traveling along the k-transmitter watchman route, either all points in P or a discrete set of points \(S\subset P\) must be k-visible to the watchman. We aim for minimizing the length of the k-transmitter watchman route.

We show that even in simple polygons the shortest k-transmitter watchman route problem for a discrete set of points \(S\subset P\) is NP-complete and cannot be approximated to within a logarithmic factor (unless P=NP), both with and without a given starting point. Moreover, we present a polylogarithmic approximation for the k-transmitter watchman route problem for a given starting point and \(S\subset P\) with approximation ratio \(O(\log ^2(|S|\cdot n) \log \log (|S|\cdot n) \log |S|)\) (with \(|P|=n\)).

Supported by grants 2018-04001 (Nya paradigmer för autonom obemannad flygledning) and 2021-03810 (Illuminate: bevisbart goda algoritmer för bevakningsproblem) from the Swedish Research Council (Vetenskapsrådet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chin, W.-P., Ntafos, S.: Optimum watchman routes. In: Proceedings of the Second Annual Symposium on Computational Geometry, SCG 1986, pp. 24–33. ACM, New York (1986). ISBN 0-89791-194-6

    Google Scholar 

  2. Chin, W.-P., Ntafos, S.: Shortest watchman routes in simple polygons. Discret. Comput. Geom. 6(1), 9–31 (1991). https://doi.org/10.1007/BF02574671

    Article  MathSciNet  MATH  Google Scholar 

  3. Tan, X., Hirata, T., Inagaki, Y.: Corrigendum to “an incremental algorithm for constructing shortest watchman routes’’. Int. J. Comput. Geom. Appl. 9(3), 319–323 (1999)

    Article  MATH  Google Scholar 

  4. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: Proceedings of the 35th Annual ACM Symposium Theory Computing, pp. 473–482. ACM Press (2003)

    Google Scholar 

  5. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple polygon. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 58–67. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57568-5_235

    Chapter  Google Scholar 

  6. Tan, X.: Fast computation of shortest watchman routes in simple polygons. Inf. Process. Lett. 77(1), 27–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumitrescu, A., Tóth, C.D.: Watchman tours for polygons with holes. Comput. Geom. 45(7), 326–333 (2012). ISSN 0925-7721

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlsson, S., Nilsson, B.J., Ntafos, S.C.: Optimum guard covers and \(m\)-watchmen routes for restricted polygons. Int. J. Comput. Geom. Appl. 3(1), 85–105 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlsson, S., Nilsson, B.J.: Computing vision points in polygons. Algorithmica 24(1), 50–75 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bhattacharya, A., Ghosh, S.K., Sarkar, S.: Exploring an unknown polygonal environment with bounded visibility. In: Alexandrov, V.N., Dongarra, J.J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 640–648. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45545-0_74

    Chapter  Google Scholar 

  11. Fekete, S., Mitchell, J.S.B., Schmidt, C.: Minimum covering with travel cost. J. Comb. Optim. 1–20 (2010). ISSN 1382-6905

    Google Scholar 

  12. Schmidt, C.: Algorithms for mobile agents with limited capabilities. Ph.D. thesis, Braunschweig Institute of Technology (2011)

    Google Scholar 

  13. Aichholzer, O., et al.: Modem illumination of monotone polygons. Comput. Geom.: Theory Appl. SI: in memoriam Ferran Hurtado (2018)

    Google Scholar 

  14. Ballinger, B., et al.: Coverage with k-transmitters in the presence of obstacles. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6509, pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17461-2_1 ISBN 978-3-642-17460-5

    Chapter  Google Scholar 

  15. Fabila-Monroy, R, Vargas, A.R., Urrutia, J.: On modem illumination problems. In: XIII Encuentros de Geometria Computacional, Zaragoza (2009)

    Google Scholar 

  16. Cannon, S., Fai, T.G., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. Comput. Geom.: Theory Appl. SI: in memory of Ferran Hurtado 68, 89–100 (2018). ISSN 0925-7721

    Google Scholar 

  17. Biedl, T., et al.: Guarding orthogonal art galleries with sliding k-transmitters: hardness and approximation. Algorithmica 81(1), 69–97 (2019). ISBN 1432-0541

    Article  MathSciNet  MATH  Google Scholar 

  18. Deneen, L.L., Joshi, S.: Treasures in an art gallery. In: Proceedings of the 4th Canadian Conference on Computational Geometry, pp. 17–22 (1992)

    Google Scholar 

  19. Carlsson, S., Jonsson, H.: Guarding a treasury. In: Proceedings of the 5th Canadian Conference on Computational Geometry, pp. 85–90 (1993)

    Google Scholar 

  20. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 196–210. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52292-1_14

    Chapter  Google Scholar 

  22. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 314–318 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nilsson, B.J., Schmidt, C. (2023). k-Transmitter Watchman Routes. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27051-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27050-5

  • Online ISBN: 978-3-031-27051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics