Skip to main content

Shortest Watchman Tours in Simple Polygons Under Rotated Monotone Visibility

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2020)

Abstract

We present an O(nrG) time algorithm for computing and maintaining a minimum length shortest watchman tour that sees a simple polygon under monotone visibility in direction \(\theta \), while \(\theta \) varies in \([0,180^{\circ })\), obtaining the directions for the tour to be the shortest one over all tours, where n is the number of vertices, r is the number of reflex vertices, and \(G\le r\) is the maximum number of gates of the polygon used at any time in the algorithm.

Bengt J. Nilsson is supported by grant 2018-04001 from the Swedish Research Council, David Orden by H2020-MSCA-RISE project 734922-CONNECT and project MTM2017-83750-P of the Spanish Ministry of Science (AEI/FEDER, UE), Carlos Seara by H2020-MSCA-RISE project 734922-CONNECT, projects MTM2015-63791-R MINECO/FEDER and Gen. Cat. DGR 2017SGR1640, and Paweł Żyliński by grant 2015/17/B/ST6/01887 from the National Science Centre, Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alegría-Galicia, C., Orden, D., Palios, L., Seara, C., Urrutia, J.: Capturing points with a rotating polygon (and a 3D extension). Theory Comput. Syst. 63(3), 543–566 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alegría-Galicia, C., Orden, D., Seara, C., Urrutia, J.: Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations. arXiv:1710.10888v2 (2019)

  3. Asano, T., Ghosh, S.K., Shermer, T.: Chapter 19. Visibility in the plane. In: Sack, J.R., Urrutia, J. (eds.) Handbook on Computational Geometry. Elsevier Science Publishers (1999)

    Google Scholar 

  4. Carlsson, S., Jonsson, H., Nilsson, B.J.: Finding the shortest watchman route in a simple polygon. Discrete Comp. Geom. 22, 377–402 (1999)

    Article  MathSciNet  Google Scholar 

  5. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comp. Geom. 6(3), 485–524 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chin, W., Ntafos, S.: Optimum watchman routes

    Google Scholar 

  7. Chin, W., Ntafos, S.: Shortest watchman routes in simple polygons. Discrete Comp. Geom. 6(1), 9–31 (1991)

    Article  MathSciNet  Google Scholar 

  8. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: 35th STOC 2003, pp. 473–482 (2003)

    Google Scholar 

  9. Dumitrescu, A., Tóth, C.D.: Watchman tours for polygons with holes. Comput. Geom. 45(7), 326–333 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gewali, L.P.: Recognizing \(s\)-star polygons. Patt. Rec. 28(7), 1019–1032 (1995)

    Article  Google Scholar 

  11. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  Google Scholar 

  12. Hammar, M., Nilsson, B.J.: Concerning the time bounds of existing shortest watchman route algorithms. In: Chlebus, B.S., Czaja, L. (eds.) FCT 1997. LNCS, vol. 1279, pp. 210–221. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0036185

    Chapter  Google Scholar 

  13. Heron of Alexandria. Catoptrica (On Reflection). \(\sim \!62\)

    Google Scholar 

  14. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18(3), 403–431 (1995)

    Article  MathSciNet  Google Scholar 

  15. Huskić, G., Buck, S., Zell, A.: GeRoNa: generic robot navigation. J. Intell. Robot. Syst. 95(2), 419–442 (2019)

    Article  Google Scholar 

  16. Icking, C., Klein, R.: Searching for the kernel of a polygon: a competitive strategy. In: 11th SoCG 1995, pp. 258–266 (1995)

    Google Scholar 

  17. Lee, D.T., Preparata, F.P.: Euclidean shortest paths in the presence of rectilinear barriers. Networks 14, 393–410 (1984)

    Article  MathSciNet  Google Scholar 

  18. Mitchell, J.S.B.: Approximating watchman routes. In: 24th SODA 2013, pp. 844–855 (2013)

    Google Scholar 

  19. Mitchell, J.S.B.,Wynters, E.L.: Watchman routes for multiple guards. In: 3rd CCCG 1991, pp. 126–129 (1991)

    Google Scholar 

  20. Nilsson, B.J., Packer, E.: An approximation algorithm for the two-watchman route in a simple polygon. In: 32nd EuroCG 2016, pp. 111–114 (2016)

    Google Scholar 

  21. Orden, D., Palios, L., Seara, C., Urrutia, J., Żyliński, P.: On the width of the monotone-visibility kernel of a simple polygon. In: 36th EuroCG 2020, pp. 13:1–13:8 (2020)

    Google Scholar 

  22. Orden, D., Palios, L., Seara, C., Żyliński, P.: Generalized kernels of polygons under rotation. In: 34th EuroCG 2018, pp. 74:1–74:6 (2018)

    Google Scholar 

  23. Palios, L.: An output-sensitive algorithm for computing the \(s\)-kernel. In: 27th CCCG 2015, pp. 199–204 (2015)

    Google Scholar 

  24. Schuierer, S., Rawlins, G.J.E., Wood, D.: A generalization of staircase visibility. In: 3rd CCCG 1991, pp. 96–99 (1991)

    Google Scholar 

  25. Schuierer, S., Wood, D.: Generalized kernels of polygons with holes. In: 5th CCCG 1993, pp. 222–227 (1993)

    Google Scholar 

  26. Schuierer, S., Wood, D.: Multiple-guards kernels of simple polygons. Theoretical Computer Science Center Research Report HKUST-TCSC-98-06 (1998)

    Google Scholar 

  27. Tan, X.-H.: Fast computation of shortest watchman routes in simple polygons. Inf. Process. Lett. 77(1), 27–33 (2001)

    Article  MathSciNet  Google Scholar 

  28. Tan, X., Hirata, T.: Constructing shortest watchman routes by divide-and-conquer. In: Ng, K.W., Raghavan, P., Balasubramanian, N.V., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 68–77. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57568-5_236

    Chapter  Google Scholar 

  29. Tan, X.-H., Hirata, T., Inagaki, Y.: An incremental algorithm for constructing shortest watchman routes. Int. J. Comput. Geom. Appl. 3(4), 351–365 (1993)

    Article  MathSciNet  Google Scholar 

  30. Tan, X.-H., Hirata, T., Inagaki, Y.: Corrigendum to “An incremental Algorithm for constructing shortest watchman routes”. Int. J. Comput. Geom. Appl. 9(3), 319–324 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt J. Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nilsson, B.J., Orden, D., Palios, L., Seara, C., Żyliński, P. (2020). Shortest Watchman Tours in Simple Polygons Under Rotated Monotone Visibility. In: Kim, D., Uma, R., Cai, Z., Lee, D. (eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science(), vol 12273. Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58150-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58149-7

  • Online ISBN: 978-3-030-58150-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics