Skip to main content

Cyberneurosecurity

  • Chapter
  • First Online:
Policy, Identity, and Neurotechnology

Part of the book series: Advances in Neuroethics ((AIN))

Abstract

Cyberbiosecurity is an emerging field that brings together diverse professionals, including biologists, computer scientists, anti-terrorism experts, and policy makers to research the growing intersection between cybersecurity and the biosciences. Cyberneurosecurity is the nascent subfield that is particularly focused on the issues related to neuroscience and cybersecurity. Internet-enabled Brain–Computer Interfaces (BCIs) like the futuristic Neuralink Link devices (Neuralink, 2023) which is expected to be on the market within a decade create numerous ethical and policy issues that are one of the chief concerns of cyberneurosecurity.

These issues can relate to (1) privacy and misappropriation resulting from the interception of neural signals that could disclose behaviors and inclinations; (2) the inoperability of associated devices like prosthetics that could result from the obfuscation or manipulation of neural signals; (3) the potential physical and cognitive and existential harms that result from receiving hacked signals in the brain and/or the hijacking of neural signals sent from the brain for medical purposes; or (4) self-hacking by the user themselves for their own putative benefits.

These and others are issues that cyberneurosecurity must engage. In response to these concerns, researchers need to devise standards, policies, and best practices to prevent malicious hackers from manipulating the technology. Practitioners need to develop tools to stress-test and assess the cyber-readiness of various BCIs, especially the increasing number of healthcare devices that employ AI that could obscure or magnify harmful hacks due in part to the lack of transparency and explainability of AI systems (Zhang et al., Ann Transl Med 8(11):712, 2020, Olsen et al., J Neural Eng 18(4):046053, 2021, Aggarwal and Chugh, Arch Comput Methods Eng 29:3001–20, 2022). BCI manufacturers need to ultimately implement industry-wide standards to protect the privacy, security, and safety of their users, and governments may need to develop regulatory oversight to promote these and other aspects of cyberneurosecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murch R. Security vulnerabilities in the bioeconomy existed prior to synthetic biology. In: Presentation to the NAS National Materials and Manufacturing Board May 1, 2019. https://sites.nationalacademies.org/cs/groups/depssite/documents/webpage/deps_192712.pdf.

  2. Potter L, Ayala O, Palmer X-L. Biocybersecurity: a converging threat as an auxiliary to war. In: ICCWS 2021 16th international conference on cyber warfare and security, 2021 p. 291. Academic Conferences Limited.

    Google Scholar 

  3. Loohuis K. Dutch researchers build security software to mimic human immune system, May 24, 2021. ComputerWeekly.com.

  4. Rauf U. A taxonomy of bio-inspired cyber security approaches: existing techniques and future directions. Arab J Sci Eng. 2018;43(12):6693–708.

    Article  Google Scholar 

  5. Pourmoafi S, Vidalis S.. Bio-cyber operations inspired by the human immune system. In: European conference on cyber warfare and security, 2021 (pp. 534–14). Academic Conferences International Limited.

    Google Scholar 

  6. Peccoud J, et al. Cyberbiosecurity: from naive trust to risk awareness. Trends Biotechnol. 2018;36:4–7.

    Article  CAS  PubMed  Google Scholar 

  7. Puzis R, Farbiash D, Brodt O, Elovici Y, Greenbaum D. Increased cyber-biosecurity for DNA synthesis. Nat Biotechnol. 2020;38(12):1379–81.

    Article  CAS  PubMed  Google Scholar 

  8. Randall SM, et al. Cyberbiosecurity: an emerging new discipline to help safeguard the bioeconomy. Front Bioeng Biotechnol. 2018;6:39. https://doi.org/10.3389/fbioe.2018.00039.

    Article  Google Scholar 

  9. Farah MJ. Neuroethics: the practical and the philosophical. Trends Cogn Sci. 2005;9(1):34–40.

    Article  PubMed  Google Scholar 

  10. Gladden ME. An axiology of information security for futuristic neuroprostheses: upholding human values in the context of technological posthumanization. Front Neurosci. 2017;11:605.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pais-Vieira M, Chiuffa G, Lebedev M, Yadav A, Nicolelis MA. Building an organic computing device with multiple interconnected brains. Sci Rep. 2015;5(1):1–15.

    Google Scholar 

  12. Bernal SL, Celdrán AH, Pérez GM, Barros MT, Balasubramaniam S. Security in brain–computer interfaces: state-of-the-art, opportunities, and future challenges. ACM Comput Surv (CSUR). 2021;54(1):1–35.

    Article  Google Scholar 

  13. Boccia M, Piccardi L, Palermo L, Nemmi F, Sulpizio V, Galati G, Guariglia C. A penny for your thoughts! Patterns of fMRI activity reveal the content and the spatial topography of visual mental images. Hum Brain Mapp. 2015;36(3):945–58.

    Article  PubMed  Google Scholar 

  14. Wenzel CH. Can thoughts be read from the brain? Neuroscience Contra Wittgenstein. Synthese. 2022;200(3):1–19.

    Article  Google Scholar 

  15. Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. High-performance brain-to-text communication via handwriting. Nature. 2021;593(7858):249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma R, Swanson RL, Parker D, Ismail AAO, Shinohara RT, Alappatt JA, Doshi J, et al. Neuroimaging findings in US government personnel with possible exposure to directional phenomena in Havana, Cuba. JAMA. 2019;322(4):336–47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hack C. Meet 10 companies working on reading your thoughts (and even those of your pets). Forbes June 21, 2020. https://www.forbes.com/sites/cathyhackl/2020/06/21/meet-10-companies-working-on-reading-your-thoughts-and-even-those-of-your-pets/?sh=4e4c92ab427c.

  18. Ienca M, Haselager P. Hacking the brain: brain–computer interfacing technology and the ethics of neurosecurity. Ethics Inf Technol. 2016;18(2):117–29.

    Article  Google Scholar 

  19. Ienca and Haselager, supra note 19.

    Google Scholar 

  20. Vidal JJ. Toward direct brain–computer communication. Annu Rev Biophys Bioeng. 1973;2(1):157–80.

    Article  CAS  PubMed  Google Scholar 

  21. Khan AA, Laghari AA, Shaikh AA, Dootio MA, Estrela VV, Lopes RT. A blockchain security module for brain–computer interface (BCI) with multimedia life cycle framework (MLCF). Neurosci Inform. 2021;2:100030.

    Article  Google Scholar 

  22. Bernal G, Montgomery SM, Maes P. Brain–computer interfaces, open-source, and democratizing the future of augmented consciousness. Front Comput Sci. 2021;3:23.

    Article  Google Scholar 

  23. Sambana B, Mishra P. A survey on brain–computer interaction. 2022. https://arxiv.org/abs/2201.00997.

  24. Bonaci T, Calo R, Chizeck HJ. App stores for the brain: privacy and security in brain–computer interfaces. In: 2014 IEEE International symposium on ethics in science, technology and engineering. Pittsburgh: IEEE; 2014. p. 1–7.

    Google Scholar 

  25. Paszkiel S. Using BCI and VR technology in neurogaming. In: Analysis and classification of EEG signals for brain–computer interfaces. Cham: Springer; 2020. p. 93–9.

    Chapter  Google Scholar 

  26. Pal D, Palit S, Dey A. Brain computer interface: a review. In: Computational advancement in communication, circuits and systems. Singapore: Springer; 2022. p. 25–35.

    Chapter  Google Scholar 

  27. Zhang S, Sun L, Mao X, Hu C, Liu P. Review on EEG-based authentication technology. Comput Intell Neurosci. 2021;2021:5229576.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Denning T, Matsuoka Y, Kohno T. Neurosecurity: security and privacy for neural devices. Neurosurg Focus. 2009;27(1):E7.

    Article  PubMed  Google Scholar 

  29. Anderson BB, Kirwan CB, Jenkins JL, Eargle D, Howard S, Vance A. How polymorphic warnings reduce habituation in the brain: Insights from an fMRI study. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, pp. 2883–2892. 2015.

    Google Scholar 

  30. Vance A, Jenkins JL, Anderson BB, Bjornn DK, Kirwan CB. Tuning out security warnings: a longitudinal examination of habituation through fMRI, eye tracking, and field experiments. MIS Q. 2018;42(2):355–80.

    Article  Google Scholar 

  31. Yonas G. NS2 NeuroScience for national security. In: Presented at the end of the beginning—improving warfighter information intake under stress (DARPA augmented cognition mission accomplished Meeting) January 25, 2007. https://www.osti.gov/servlets/purl/1724532.

  32. Martinovic I, Davies D, Frank M, Perito D, Ros T, Song D. On the feasibility of side-channel attacks with brain–computer interfaces. In: 21st {USENIX} security symposium ({USENIX} security 12), pp. 143–158. 2012.

    Google Scholar 

  33. Markosian C, Taruvai VS, Mammis A. Neuromodulatory hacking: a review of the technology and security risks of spinal cord stimulation. Acta Neurochir. 2020;162(12):3213–9.

    Article  PubMed  Google Scholar 

  34. Pycroft L, Boccard SG, Owen SL, Stein JF, Fitzgerald JJ, Green AL, Aziz TZ. Brainjacking: implant security issues in invasive neuromodulation. World Neurosurg. 2016;92:454–62.

    Article  PubMed  Google Scholar 

  35. Cusack B, Sundararajan K, Khaleghparast R. Neurosecurity for brainware devices. Perth: Edith Cowan University; 2017.

    Google Scholar 

  36. Lange J, Massart C, Mouraux A, Standaert FX. Side-channel attacks against the human brain: the PIN code case study. In: International workshop on constructive side-channel analysis and secure design. Cham: Springer; 2017. p. 171–89.

    Chapter  Google Scholar 

  37. Belkacem AN, Jamil N, Palmer JA, Ouhbi S, Chen C. Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front Neurosci. 2020;14:692.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Greenbaum D. Ethical, legal and social concerns relating to exoskeletons. ACM SIGCAS Comput Soc. 2016;45(3):234–9.

    Article  Google Scholar 

  39. Greenbaum D, Cabrera LY. ELSI in human enhancement: what distinguishes it from therapy? Front Genet. 2020;11:618.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Keskin C, et al. Changing an application state using neurological data. US Patent 9, 864,431. 2018 Jan 9.

    Google Scholar 

  41. Yuste R, Goering S, Bi G, Carmena JM, Carter A, Fins JJ, Friesen P, Gallant J, Huggins JE, Illes J, Kellmeyer P. Four ethical priorities for neurotechnologies and AI. Nature. 2017;551(7679):159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strickland E, Gallucci M. First win for the Neurorights campaign: Chile plans to regulate all neurotech and ban the sale of brain data. IEEE Spectr. 2022;59(1):26–58.

    Article  Google Scholar 

  43. Sententia W. Neuroethical considerations: cognitive liberty and converging technologies for improving human cognition. Ann N Y Acad Sci. 2004;1013(1):221–8.

    Article  PubMed  Google Scholar 

  44. Bublitz J-C. My mind is mine!? Cognitive liberty as a legal concept. In: Cognitive enhancement. Dordrecht: Springer; 2013. p. 233–64.

    Chapter  Google Scholar 

  45. Ienca M, Andorno R. Towards new human rights in the age of neuroscience and neurotechnology. Life Sci Soc Policy. 2017;13(1):1–27.

    Article  Google Scholar 

  46. Dadia T, Greenbaum D. Neuralink: the ethical ‘Rithmatic of reading and writing’ to the brain. AJOB Neurosci. 2019;10(4):187–9.

    Article  PubMed  Google Scholar 

  47. Shemma A, Meirom R, Greenbaum D. The impact of the humanities in science and technology research: a multidisciplinary approach to the ethical, social, and legal impacts of science and innovation. Am J Bioeth. 2016;14(4):20–8.

    Google Scholar 

  48. Is this a fact? There’s no citation for this, and it seems like a generalization.

    Google Scholar 

  49. Zhu G, Huang Y, Wang X. Basic theory of EEG. In: Multi-modal EEG monitoring of severely neurologically ill patients. Singapore: Springer; 2022. p. 3–25.

    Chapter  Google Scholar 

  50. Greenberg J, et al. Privacy and the connected mind—understanding the data flows and privacy risks of brain–computer interfaces. https://fpf.org/wp-content/uploads/2021/11/FPF-BCI-Report-Final.pdf.

  51. Greenbaum D. Cyberbiosecurity: an emerging field that has ethical implications for clinical neuroscience. Camb Q Healthc Ethics. 2021;30(4):662–8.

    Article  PubMed  Google Scholar 

  52. Greenbaum D. Avoiding regulation in the medical internet of things. In: Cohen IG, editor. Big data, health law, and bioethics. Cambridge: Cambridge University Press; 2018.

    Google Scholar 

  53. Schneier B. Security in the real world: how to evaluate security technology. Comput Secur J. 1999;15:1–14.

    Google Scholar 

  54. Muthuppalaniappan M, Stevenson K. Healthcare cyber-attacks and the COVID-19 pandemic: an urgent threat to global health. Int J Qual Health Care. 2021;33(1):mzaa117.

    Article  PubMed  Google Scholar 

  55. Liu J, Lee HJ, Weitz AJ, Fang Z, Lin P, Choy M, Fisher R, et al. Frequency-selective control of cortical and subcortical networks by central thalamus. elife. 2015;4:e09215.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bernal SL, Celdrán AH, Pérez GM. Eight reasons why cybersecurity on novel generations of brain–computer interfaces must be prioritized. 2021. https://arxiv.org/abs/2106.04968.

  57. Sherman M, Idan Z, Greenbaum D. Who watches the step-watchers: the ups and downs of turning anecdotal citizen science into actionable clinical data. Am J Bioeth. 2019;19(8):44–6.

    Article  PubMed  Google Scholar 

  58. Greenbaum D. Avoiding regulation in the medical internet of things. In: Cohen IG, Lynch HF, Vayena E, Gasser U, editors. Big data, health law, and bioethics. Cambridge: Cambridge University Press; 2018.

    Google Scholar 

  59. Hildt E. Affective brain–computer music interfaces—drivers and implications. Front Hum Neurosci. 2021;15:711407. https://doi.org/10.3389/fnhum.2021.711407/full.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Solterbeck A. Protecting data at rest and in motion. Netw Secur. 2006;2006(9):14–7.

    Article  Google Scholar 

  61. Frank M, Hwu T, Jain S, Knight RT, Martinovic I, Mittal P, Perito D, Sluganovic I, Song D. Using EEG-based BCI devices to subliminally probe for private information. In: Proceedings of the 2017 on workshop on privacy in the electronic society, pp. 133–136. 2017.

    Google Scholar 

  62. Bernal SL, Celdrán AH, Maimó LF, Barros MT, Balasubramaniam S, Pérez GM. Cyberattacks on miniature brain implants to disrupt spontaneous neural signaling. IEEE Access. 2020;8:152204–22.

    Article  Google Scholar 

  63. Parastarfeizabadi M, Kouzani AZ. Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehabil. 2017;14(1):1–20.

    Article  Google Scholar 

  64. Marin E, Singelée D, Yang B, Volski V, Vandenbosch GA, Nuttin B, Preneel B. Securing wireless neurostimulators. In: Proceedings of the eighth ACM conference on data and application security and privacy, pp. 287–298. 2018.

    Google Scholar 

  65. Polania R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.

    Article  CAS  PubMed  Google Scholar 

  66. Landau O, Puzis R, Nissim N. Mind your mind: EEG-based brain–computer interfaces and their security in cyber space. ACM Comput Surv (CSUR). 2020;53(1):1–38.

    Article  Google Scholar 

  67. Bonaci T, Calo R, Chizeck HJ. App stores for the brain: privacy and security in brain–computer interfaces. In: In 2014 IEEE international symposium on ethics in science, technology and engineering. Pittsburgh: IEEE; 2014. p. 1–7.

    Google Scholar 

  68. Shen G, Horikawa T, Majima K, Kamitani Y. Deep image reconstruction from human brain activity. PLoS Comput Biol. 2019;15(1):e1006633.

    Article  PubMed  PubMed Central  Google Scholar 

  69. VanRullen R, Reddy L. Reconstructing faces from fMRI patterns using deep generative neural networks. Commun Biol. 2019;2(1):1–10.

    Article  Google Scholar 

  70. Burr C, Cristianini N. Can machines read our minds? Mind Mach. 2019;29(3):461–94.

    Article  Google Scholar 

  71. Ren Z, Li J, Xue X, Li X, Yang F, Jiao Z, Gao X. Reconstructing seen image from brain activity by visually-guided cognitive representation and adversarial learning. NeuroImage. 2021;228:117602.

    Article  PubMed  Google Scholar 

  72. Huang W, Yan H, Wang C, Yang X, Li J, Zuo Z, Zhang J, Chen H. Deep natural image reconstruction from human brain activity based on conditional progressively growing generative adversarial networks. Neurosci Bull. 2021;37(3):369–79.

    Article  PubMed  Google Scholar 

  73. Li Q, Ding D, Conti M. Brain–computer interface applications: security and privacy challenges. In: 2015 IEEE conference on communications and network security (CNS). Pittsburgh: IEEE; 2015. p. 663–6.

    Google Scholar 

  74. Canham M, Sawyer BD. Neurosecurity. Am Intell J. 2019;36(2):40–7.

    Google Scholar 

  75. Patel K, Shah H, Dcosta M, Shastri D. Evaluating NeuroSky’s single-channel EEG sensor for drowsiness detection. In: International conference on human–computer interaction. Cham: Springer; 2017. p. 243–50.

    Google Scholar 

  76. http://www.smartcaptech.com.

  77. Kılıç B, Aydın S. Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics. 2022;20:863–77.

    Article  PubMed  Google Scholar 

  78. https://www.technologyreview.com/2018/04/30/143155/with-brain-scanning-hats-china-signals-it-has-no-interest-in-workers-privacy/.

  79. LaRocco J, Le MD, Paeng DG. A systemic review of available low-cost EEG headsets used for drowsiness detection. Front Neuroinform. 2020;14:42.

    Article  Google Scholar 

  80. https://www.nytimes.com/2020/02/06/business/drowsy-driving-truckers.html.

  81. Krausová A. Legal aspects of brain–computer interfaces. Masaryk Univ J Law Technol. 2014;8:199–208.

    Google Scholar 

  82. https://hbr.org/2019/01/neuromarketing-what-you-need-to-know.

  83. Matthews S, Bernal SL, Celdrán AH, Pérez GM. What is it and is it a threat to privacy? In: Clausen J, Levy N, editors. Handbook of neuroethics; 2015. p. 1627–45. https://doi.org/10.1007/978-94-007-4707-4_154.

    Chapter  Google Scholar 

  84. Martinovic I, Davies D, Frank M, Perito D, Ros T, Song D. On the feasibility of side-channel attacks with brain–computer interfaces. USENIX Secur. 2012;12:143–58.

    Google Scholar 

  85. Takabi H, Bhalotiya A, Alohaly M. Brain computer interface (BCI) applications: privacy threats and countermeasures. In: IEEE 2nd international conference on collaboration and internet computing. Pittsburgh: IEEE; 2016. p. 102–11.

    Google Scholar 

  86. https://openbci.com.

  87. https://www.tobii.com/.

  88. https://www.roadtovr.com/valve-openbci-immersive-vr-games/.

  89. Heller B. Human Rights and Immersive Technology, Carr Center for human rights policy. Cambridge: Harvard Kennedy School; 2020.

    Google Scholar 

  90. Heller B. Watching androids dream of electric sheep: immersive technology, biometric psychography, and the law. Vanderbilt J Entertainment Technol Law. 2020;23:1.

    Google Scholar 

  91. Mane R, Chouhan T, Guan C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng. 2020;17(4):041001.

    Article  PubMed  Google Scholar 

  92. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, Gerloff C, et al. Effects of tDCS on motor learning and memory formation: a consensus and critical position paper. Clin Neurophysiol. 2017;128(4):589–603.

    Article  PubMed  Google Scholar 

  93. Parens E. Enhancing human traits: ethical and social implications. Washington, DC: Georgetown University Press; 2000.

    Google Scholar 

  94. Erler A. Does memory modification threaten our authenticity? Neuroethics. 2011;4(3):235–49.

    Article  PubMed  Google Scholar 

  95. Coin A, Dubljević V. The authenticity of machine-augmented human intelligence: therapy, enhancement, and the extended mind. Neuroethics. 2021;14(2):283–90.

    Article  Google Scholar 

  96. Wexler A. A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (TDCS) devices in the United States. J Law Biosci. 2016;2(3):669–96.

    Google Scholar 

  97. Wexler A. Who uses direct-to-consumer brain stimulation products, and why? A study of home users of tDCS devices. J Cogn Enhancement. 2018;2(1):114–34.

    Article  Google Scholar 

  98. Goering S, Klein E, Specker Sullivan L, Wexler A, Agüera y Arcas B, Bi G, Carmena JM, et al. Recommendations for responsible development and application of neurotechnologies. Neuroethics. 2021;14(3):365–86.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chizeck H, Bonaci T. Brain–computer interface anonymizer. US Patent App. 14/174818. 2014 Aug 14. http://www.google.com/patents/US20140228701.

  100. Zhang X, Ma Z, Zheng H, Li T, Chen K, Wang X, Liu C, Xu L, Wu X, Lin D, Lin H. The combination of brain–computer interfaces and artificial intelligence: applications and challenges. Ann Transl Med. 2020;8(11):712.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Olsen S, Zhang J, Liang KF, Lam M, Riaz U, Kao JC. An artificial intelligence that increases simulated brain–computer interface performance. J Neural Eng. 2021;18(4):046053.

    Article  Google Scholar 

  102. Aggarwal S, Chugh N. Review of machine learning techniques for EEG based brain computer interface. Arch Comput Methods Eng. 2022;29:3001–20.

    Article  Google Scholar 

  103. Cavoukian A. Privacy by design: the 7 foundational principles. Inf Priv Commiss Ontario Can. 2009;5:12.

    Google Scholar 

  104. Mulvenna M, Boger J, Bond R. Ethical by design: a manifesto. In: Proceedings of the European conference on cognitive ergonomics 2017. Umea: ITWIL; 2017. p. 51–4.

    Chapter  Google Scholar 

  105. Neuralink. 2023. https://neuralink.com/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Greenbaum .

Editor information

Editors and Affiliations

Ethics declarations

No industry funding is disclosed.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liv, N., Greenbaum, D. (2023). Cyberneurosecurity. In: Dubljević, V., Coin, A. (eds) Policy, Identity, and Neurotechnology. Advances in Neuroethics. Springer, Cham. https://doi.org/10.1007/978-3-031-26801-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26801-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26800-7

  • Online ISBN: 978-3-031-26801-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics