Skip to main content

Links Between Glucose and Lipoproteins

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 371 Accesses

Abstract

While hyperglycemia is the hallmark of diabetes mellitus, abnormalities of lipoprotein metabolism and quantitative and qualitative changes in lipoproteins exist. The relationship between glycemia and lipoproteins is bidirectional. Hyperglycemia is associated with increased levels of Very Low Density Lipoproteins (VLDL), a shift toward small dense Low Density Lipoprotein (LDL), high levels of ApoB, and low levels of High Density Lipoprotein (HDL) and ApoA1. Glucose-induced qualitative changes in lipoproteins also exist, including increased non-enzymatic glycation, which adversely impacts lipoprotein metabolism and function. Associations between HDL and glycemia are most well-studied, with HDL impacting glycemia by effects on insulin secretion and insulin resistance and modulating type 2 diabetes onset and its natural history of glycemic progression. The treatment of lipoprotein levels also impacts glycemia, and the treatment of hyperglycemia impacts lipoproteins. Basic science and genetic studies provide insights. This chapter overviews the functions of lipoproteins, associations between lipoproteins and glycemia, and the treatment effects of lipid drugs on glucose, with an emphasis on human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jenkins AJ, Best JD, Klein RL, Lyons TJ. Lipoproteins, glycoxidation and diabetic angiopathy. Diabetes Metab Res Rev. 2004;20(5):349–68.

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins A, Scott E, Fulcher J, Kilov G, Januszewski A. Management of diabetes. In: Toth P, Canon C, editors. Comprehensive cardiovascular medicine in the primary care setting. Cham: Humana Press; 2019.

    Google Scholar 

  3. Parhofer KG. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes Metab J. 2015;39(5):353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schmidt K, Noureen A, Kronenberg F, Utermann G. Structure, function, and genetics of lipoprotein (a). J Lipid Res. 2016;57(8):1339–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Januszewski AS, Karschimkus C, Davis KE, O’Neal D, Ward G, Jenkins AJ. Plasma 1,5 anhydroglucitol levels, a measure of short-term glycaemia: assay assessment and lower levels in diabetic vs. non-diabetic subjects. Diabetes Res Clin Pract. 2012;95(1):e17–9.

    Article  CAS  PubMed  Google Scholar 

  6. Januszewski AS, Cho YH, Joglekar MV, Farr RJ, Scott ES, Wong WKM, Carroll LM, Loh YW, Benitez-Aguirre PZ, Keech AC, O’Neal DN, Craig ME, Hardikar AA, Donaghue KC, Jenkins AJ. Insulin micro-secretion in type 1 diabetes and related microRNA profiles. Sci Rep. 2021;11(1):11727. https://doi.org/10.1038/s41598-021-90856-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibb FW, McKnight JA, Clarke C, Strachan MWJ. Preserved C-peptide secretion is associated with fewer low-glucose events and lower glucose variability on flash glucose monitoring in adults with type 1 diabetes. Diabetologia. 2020;63(5):906–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Januszewski AS, Sachithanandan N, Ward G, Karschimkus CS, O’Neal DN, Jenkins AJ. Estimated insulin sensitivity in type 1 diabetes adults using clinical and research biomarkers. Diabetes Res Clin Pract. 2020;167:108359.

    Article  CAS  PubMed  Google Scholar 

  9. Jenkins AJ, Best JD. The role of lipoprotein(a) in the vascular complications of diabetes mellitus. J Intern Med. 1995;237(4):359–65. https://doi.org/10.1111/j.1365-2796.1995.tb01187.x.

    Article  CAS  PubMed  Google Scholar 

  10. Jenkins AJ, Steele JS, Janus ED, Best JD. Increased plasma apolipoprotein(a) levels in IDDM patients with microalbuminuria. Diabetes. 1991;40(6):787–90. https://doi.org/10.2337/diab.40.6.787.

    Article  CAS  PubMed  Google Scholar 

  11. Ren X, Zhang Z, Yan Z. Association between lipoprotein (A) and diabetic nephropathy in patients with type 2 diabetes mellitus: a meta-analysis. Front Endocrinol (Lausanne). 2021;12:633529.

    Article  PubMed  Google Scholar 

  12. Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol Metab. 2021;50:101238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaitonde DY, Rowley KD, Sweeney LB. Hypothyroidism: an update. Am Fam Physician. 2012;86(3):244–51.

    PubMed  Google Scholar 

  14. Sivashanmugarajah A, Fulcher J, Sullivan D, Elam M, Jenkins A, Keech A. Suggested clinical approach for the diagnosis and management of ‘statin intolerance’ with an emphasis on muscle-related side-effects. Intern Med J. 2019;49(9):1081–91.

    Article  PubMed  Google Scholar 

  15. Besseling J, Kastelein JJ, Defesche JC, Hutten BA, Hovingh GK. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA. 2015;313(10):1029–36.

    Article  CAS  PubMed  Google Scholar 

  16. Fu Q, Hu L, Xu Y, Yi Y, Jiang L. High lipoprotein(a) concentrations are associated with lower type 2 diabetes risk in the Chinese Han population: a large retrospective cohort study. Lipids Health Dis. 2021;20(1):76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Šimonienė D, Platūkiene A, Prakapienė E, Radzevičienė L, Veličkiene D. Insulin resistance in type 1 diabetes mellitus and its association with patient’s micro- and macrovascular complications, sex hormones, and other clinical data. Diabetes Ther. 2020;11(1):161–74.

    Article  PubMed  Google Scholar 

  18. Veiraiah A. Hyperglycemia, lipoprotein glycation, and vascular disease. Angiology. 2005;56(4):431–8.

    Article  PubMed  Google Scholar 

  19. Lyons TJ, Jenkins AJ. Lipoprotein glycation and its metabolic consequences. Curr Opin Lipidol. 1997;8(3):174–80. https://doi.org/10.1097/00041433-199706000-00008.

    Article  CAS  PubMed  Google Scholar 

  20. Soran H, Durrington PN. Susceptibility of LDL and its subfractions to glycation. Curr Opin Lipidol. 2011;22(4):254–61. https://doi.org/10.1097/MOL.0b013e328348a43f.

    Article  CAS  PubMed  Google Scholar 

  21. Younis NN, Soran H, Charlton-Menys V, Sharma R, Hama S, Pemberton P, Elseweidy MM, Durrington PN. High-density lipoprotein impedes glycation of low-density lipoprotein. Diab Vasc Dis Res. 2013;10(2):152–60. https://doi.org/10.1177/1479164112454309. Epub 2012 Aug 13.

    Article  CAS  PubMed  Google Scholar 

  22. Jenkins AJ, Thorpe SR, Alderson NL, Hermayer KL, Lyons TJ, King LP, Chassereau CN, Klein RL. In vivo glycated low-density lipoprotein is not more susceptible to oxidation than nonglycated low-density lipoprotein in type 1 diabetes. Metabolism. 2004;53(8):969–76. https://doi.org/10.1016/j.metabol.2004.01.002.

    Article  CAS  PubMed  Google Scholar 

  23. Jenkins AJ, Klein RL, Chassereau CN, Hermayer KL, Lopes-Virella MF. LDL from patients with well-controlled IDDM is not more susceptible to in vitro oxidation. Diabetes. 1996;45(6):762–7. https://doi.org/10.2337/diab.45.6.762.

    Article  CAS  PubMed  Google Scholar 

  24. Lopes-Virella MF, Baker NL, Hunt KJ, Lyons TJ, Jenkins AJ, Virella G, DCCT/EDIC Study Group. High concentrations of AGE-LDL and oxidized LDL in circulating immune complexes are associated with progression of retinopathy in type 1 diabetes. Diabetes Care. 2012;35(6):1333–40. https://doi.org/10.2337/dc11-2040. Epub 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klein RL, Semler AJ, Baynes JW, Thorpe SR, Lyons TJ, Jenkins AJ. Glycation does not alter LDL-induced secretion of tissue plasminogen activator and plasminogen activator inhibitor-1 from human aortic endothelial cells. Ann N Y Acad Sci. 2005;1043:379–89. https://doi.org/10.1196/annals.1333.044.

    Article  CAS  PubMed  Google Scholar 

  26. Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications. Curr Pharm Des. 2004;10(27):3395–418. https://doi.org/10.2174/1381612043383188.

    Article  CAS  PubMed  Google Scholar 

  27. Kalogerakis G, Baker AM, Christov S, Rowley KG, Dwyer K, Winterbourn C, Best JD, Jenkins AJ. Oxidative stress and high-density lipoprotein function in type I diabetes and end-stage renal disease. Clin Sci (Lond). 2005;108(6):497–506.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholls SJ, Nelson AJ. HDL and cardiovascular disease. Pathology. 2019;51(2):142–7.

    Article  CAS  PubMed  Google Scholar 

  29. Yalcinkaya M, Kerksiek A, Gebert K, Annema W, Sibler R, Radosavljevic S, Lütjohann D, Rohrer L, von Eckardstein A. HDL inhibits endoplasmic reticulum stress-induced apoptosis of pancreatic β-cells in vitro by activation of smoothened. J Lipid Res. 2020;61(4):492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119:2103–11.

    Article  CAS  PubMed  Google Scholar 

  31. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, et al. Illuminate investigators, effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  32. Menon V, Kumar A, Patel DR, St JJ, Riesmeyer J, Weerakkody G, Ruotolo G, Wolski KE, McErlean E, Cremer PC, et al. Effect of CETP inhibition with evacetrapib in patients with diabetes mellitus enrolled in the ACCELERATE trial. BMJ Open Diabetes Res Care. 2020;8:e000943.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koyama K, Chen G, Lee Y, Unger RH. Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol. 1997;273(4):E708–13.

    CAS  PubMed  Google Scholar 

  34. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. Lancet. 2010;375(9733):2267–77. https://doi.org/10.1016/S0140-6736(10)60408-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang H, Lum H, Alvarez A, Garduno-Garcia JJ, Daniel BJ, Musi N. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects. PLoS One. 2018;13(4):e0195810.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kersten S. ANGPTL3 as therapeutic target. Curr Opin Lipidol. 2021;32(6):335–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haffner SM, Stern MP, Hazuda HP, Mitchell BD, Patterson JK. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA. 1990;263:2893–8.

    Article  CAS  PubMed  Google Scholar 

  38. Abbasi A, Corpeleijn E, Gansevoort RT, et al. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. J Clin Endocrinol Metab. 2013;98:E1352–9.

    Article  CAS  PubMed  Google Scholar 

  39. Festa A, Williams K, Hanley AJG, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation. 2005;111:3465–72.

    Article  PubMed  Google Scholar 

  40. Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes. 2010;59:1153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D’Agostino RB Jr, Hamman RF, Karter AJ, Mykkanen L, Wagenknecht LE, Haffner SM, Insulin Resistance Atherosclerosis Study Investigators. Cardiovascular disease risk factors predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2004;27:2234–40.

    Article  PubMed  Google Scholar 

  42. Hodge AM, Jenkins AJ, English DR, O’Dea K, Giles GG. NMR-determined lipoprotein subclass profile predicts type 2 diabetes. Diabetes Res Clin Pract. 2009;83:132–9.

    Article  CAS  PubMed  Google Scholar 

  43. Goldberg RB, Temprosa M, Haffner S, Diabetes Prevention Program Research Group, et al. Effect of progression from impaired glucose tolerance to diabetes on cardiovascular risk factors and its amelioration by lifestyle and metformin intervention: the diabetes prevention program randomized trial by the Diabetes Prevention Program Research Group. Diabetes Care. 2009;32:726–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cai Z, Chen Z, Fang W, Li W, Huang Z, Wang X, Chen G, Wu W, Chen Z, Wu S, Chen Y. Triglyceride to high-density lipoprotein cholesterol ratio variability and incident diabetes: a 7-year prospective study in a Chinese population. J Diabetes Investig. 2021;12(10):1864–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haase CL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes. 2015;64(9):3328–33.

    Article  CAS  PubMed  Google Scholar 

  46. Brahimaj A, Ligthart S, Ikram MA, Hofman A, Franco OH, Sijbrands EJ, Kavousi M, Dehghan A. Serum levels of apolipoproteins and incident type 2 diabetes: a prospective cohort study. Diabetes Care. 2017;40(3):346–51.

    Article  PubMed  Google Scholar 

  47. Mora S, Kamstrup PR, Rifai N, Nordestgaard BG, Buring JE, Ridker PM. Lipoprotein(a) and risk of type 2 diabetes. Clin Chem. 2010;56(8):1252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Herzog K, Andersson T, Grill V, Hammar N, Malmström H, Talbäck M, Walldius G, Carlsson S. Alterations in biomarkers related to glycemia, lipid metabolism, and inflammation up to 20 years before diagnosis of type 1 diabetes in adults: findings from the AMORIS cohort. Diabetes Care. 2022;45(2):330–8.

    Article  CAS  PubMed  Google Scholar 

  49. Waldman B, Jenkins AJ, Sullivan D, Ng MKC, Keech AC. HDL as a target for glycemic control. Curr Drug Targets. 2017;18(6):651–73.

    Article  CAS  PubMed  Google Scholar 

  50. Waldman B, Jenkins AJ, Davis TM, Taskinen MR, Scott R, O’Connell RL, Gebski VJ, Ng MK, Keech AC, FIELD Study Investigators. HDL-C and HDL-C/ApoA-I predict long-term progression of glycemia in established type 2 diabetes. Diabetes Care. 2014;37(8):2351–8.

    Article  CAS  PubMed  Google Scholar 

  51. Nusca A, Tuccinardi D, Albano M, Cavallaro C, Ricottini E, Manfrini S, Pozzilli P, Di Sciascio G. Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes Metab Res Rev. 2018;34(8):e3047.

    Article  PubMed  Google Scholar 

  52. Ceriello A, Monnier L, Owens D. Glycaemic variability in diabetes: clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019;7(3):221–30. https://doi.org/10.1016/S2213-8587(18)30136-0.

    Article  PubMed  Google Scholar 

  53. Škrha J, Šoupal J, Škrha J Jr, Prázný M. Glucose variability, HbA1c and microvascular complications. Rev Endocr Metab Disord. 2016;17(1):103–10.

    Article  PubMed  Google Scholar 

  54. Scott ES, Januszewski AS, O’Connell R, Fulcher G, Scott R, Kesaniemi A, Wu L, Colagiuri S, Keech A, Jenkins AJ. Long-term glycemic variability and vascular complications in type 2 diabetes: post hoc analysis of the FIELD study. J Clin Endocrinol Metab. 2020;105(10):dgaa361.

    Article  PubMed  Google Scholar 

  55. Ceriello A, Prattichizzo F. Variability of risk factors and diabetes complications. Cardiovasc Diabetol. 2021;20(1):101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee S, Zhou J, Wong WT, Liu T, Wu WKK, Wong ICK, Zhang Q, Tse G. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr Disord. 2021;21(1):94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mian Z, Hermayer KL, Jenkins A. Continuous glucose monitoring: review of an innovation in diabetes management. Am J Med Sci. 2019;358(5):332–9.

    Article  PubMed  Google Scholar 

  58. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, Bosi E, Buckingham BA, Cefalu WT, Close KL, Cobelli C, Dassau E, DeVries JH, Donaghue KC, Dovc K, Doyle FJ 3rd, Garg S, Grunberger G, Heller S, Heinemann L, Hirsch IB, Hovorka R, Jia W, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Levine B, Mayorov A, Mathieu C, Murphy HR, Nimri R, Nørgaard K, Parkin CG, Renard E, Rodbard D, Saboo B, Schatz D, Stoner K, Urakami T, Weinzimer SA, Phillip M. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019;42(8):1593–603.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hsieh A, Twigg SM. The enigma of the dead-in-bed syndrome: challenges in predicting and preventing this devastating complication of type 1 diabetes. J Diabetes Complications. 2014;28(5):585–7.

    Article  PubMed  Google Scholar 

  60. Kahal H, Halama A, Aburima A, Bhagwat AM, Butler AE, Graumann J, Suhre K, Sathyapalan T, Atkin SL. Effect of induced hypoglycemia on inflammation and oxidative stress in type 2 diabetes and control subjects. Sci Rep. 2020;10(1):4750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yi SW, Yi JJ, Ohrr H. Total cholesterol and all-cause mortality by sex and age: a prospective cohort study among 12.8 million adults. Sci Rep. 2019;9(1):1596.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu L, Shen G, Huang JY, Yu YL, Chen CL, Huang YQ, et al. U-shaped association between low-density lipid cholesterol and diabetes mellitus in patients with hypertension. Lipids Health Dis. 2019;18(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li X, Guan B, Wang Y, Tse G, Zou F, Khalid BW, et al. Association between high-density lipoprotein cholesterol and all-cause mortality in the general population of northern China. Sci Rep. 2019;9(1):14426.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Park JB, Kim DH, Lee H, Hwang IC, Yoon YE, Park HE, et al. Mildly abnormal lipid levels, but not high lipid variability, are associated with increased risk of myocardial infarction and stroke in “statin-naive” young population a Nationwide cohort study. Circ Res. 2020;126(7):824–35.

    Article  CAS  PubMed  Google Scholar 

  65. Han BH, Han K, Yoon KH, Kim MK, Lee SH. Impact of mean and variability of high-density lipoprotein-cholesterol on the risk of myocardial infarction, stroke, and mortality in the general population. J Am Heart Assoc. 2020;9(7):e015493.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boey E, Gay GM, Poh KK, Yeo TC, Tan HC, Lee CH. Visit-to-visit variability in LDL- and HDL-cholesterol is associated with adverse events after ST segment elevation myocardial infarction: a 5-year follow-up study. Atherosclerosis. 2016;244:86–92.

    Article  CAS  PubMed  Google Scholar 

  67. Lee HJ, Lee SR, Choi EK, Han KD, Oh S. Low lipid levels and high variability are associated with the risk of new-onset atrial fibrillation. J Am Heart Assoc. 2019;8(23):e012771.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Clark D 3rd, Nicholls SJ, St John J, Elshazly MB, Kapadia SR, Tuzcu EM, et al. Visit-to-visit cholesterol variability correlates with coronary atheroma progression and clinical outcomes. Eur Heart J. 2018;39(27):2551–8.

    Article  CAS  PubMed  Google Scholar 

  69. Viazzi F, Russo GT, Ceriello A, Fioretto P, Giorda C, De Cosmo S, Pontremoli R. Natural history and risk factors for diabetic kidney disease in patients with T2D: lessons from the AMD-annals. J Nephrol. 2019;32(4):517–25.

    Article  CAS  PubMed  Google Scholar 

  70. Wan EYF, Yu EYT, Chin WY, Barrett JK, Mok AHY, Lau CST, Wang Y, Wong ICK, Chan EWY, Lam CLK. Greater variability in lipid measurements associated with cardiovascular disease and mortality: a 10-year diabetes cohort study. Diabetes Obes Metab. 2020;22(10):1777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wan EYF, Yu EYT, Chin WY, Lau CST, Mok AHY, Wang Y, Wong ICK, Chan EWY, Lam CLK. Greater variability in lipid measurements associated with kidney diseases in patients with type 2 diabetes mellitus in a 10-year diabetes cohort study. Sci Rep. 2021;11(1):8047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cholesterol Treatment Trialists’ (CTT) Collaborators, Kearney PM, Blackwell L, Collins R, Keech A, Simes J, Peto R, Armitage J, Baigent C. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371(9607):117–25.

    Article  Google Scholar 

  73. Casula M, Mozzanica F, Scotti L, Tragni E, Pirillo A, Corrao G, Catapano AL. Statin use and risk of new-onset diabetes: a meta-analysis of observational studies. Nutr Metab Cardiovasc Dis. 2017;27(5):396–406.

    Article  CAS  PubMed  Google Scholar 

  74. Baker W, Talati R, White C, Coleman C. Differing effect of statins on insulin sensitivity in non-diabetics: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2010;87:98–107.

    Article  CAS  PubMed  Google Scholar 

  75. Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32:1924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomized statin trials. Lancet. 2010;375:735–42.

    Article  CAS  PubMed  Google Scholar 

  77. Ishikawa M, Namiki A, Kubota T, et al. Effect of pravastatin and atorvastatin on glucose metabolism in nondiabetic patients with hypercholesterolemia. Intern Med. 2006;45:51–5.

    Article  PubMed  Google Scholar 

  78. Koh K, Quon M, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol. 2010;55:1209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zafrir B, Jain M. Lipid-lowering therapies, glucose control and incident diabetes: evidence, mechanisms and clinical implications. Cardiovasc Drugs Ther. 2014;28(4):361–77.

    Article  CAS  PubMed  Google Scholar 

  80. Wang X, Zhang Y, Tan H, Wang P, Zha X, Chong W, Zhou L, Fang F. Efficacy and safety of bempedoic acid for prevention of cardiovascular events and diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol. 2020;19(1):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Masson W, Lobo M, Lavalle-Cobo A, Masson G, Molinero G. Effect of bempedoic acid on new onset or worsening diabetes: a meta-analysis. Diabetes Res Clin Pract. 2020;168:108369.

    Article  CAS  PubMed  Google Scholar 

  82. Monami M, Sesti G, Mannucci E. PCSK9 inhibitor therapy: a systematic review and meta-analysis of metabolic and cardiovascular outcomes in patients with diabetes. Diabetes Obes Metab. 2019;21(4):903–8.

    Article  PubMed  Google Scholar 

  83. González-Ortiz M, Martínez-Abundis E, Kam-Ramos AM, Hernández-Salazar E, Ramos-Zavala MG. Effect of ezetimibe on insulin sensitivity and lipid profile in obese and dyslipidaemic patients. Cardiovasc Drugs Ther. 2006;20(2):143–6.

    Article  PubMed  Google Scholar 

  84. Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsbøll T, Knop FK. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J Diabetes Complications. 2017;31(5):918–27.

    Article  PubMed  Google Scholar 

  85. Teramoto T, Shirai K, Daida H, Yamada N. Effects of bezafibrate on lipid and glucose metabolism in dyslipidemic patients with diabetes: the J-BENEFIT study. Cardiovasc Diabetol. 2012;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hartweg J, Perera R, Montori VM, Dinneen SF, Neil HA, Farmer AJ. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008(1):CD003205. https://doi.org/10.1002/146551858.CD003205.pub2.

  87. Akinkuolie AO, Ngwa JS, Meigs JB, Djoussé L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: a meta-analysis of randomized controlled trials. Clin Nutr. 2011;30:702–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Goldie C, Taylor AJ, Nguyen P, McCoy C, Zhao XQ, Preiss D. Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart. 2016;102(3):198–203.

    Article  CAS  PubMed  Google Scholar 

  89. Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, Thomas WG, Mukhamedova N, de Courten B, Forbes JM, Yap FY, Kaye DM, van Hall G, Febbraio MA, Kemp BE, Sviridov D, Steinberg GR, Kingwell BA. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119(15):2103–11.

    Article  CAS  PubMed  Google Scholar 

  90. Barter PJ, Rye KA, Tardif JC, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the investigation of lipid level management to understand its impact in atherosclerotic events (ILLUMINATE) trial. Circulation. 2011;124:555–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia J. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jenkins, A.J. (2023). Links Between Glucose and Lipoproteins. In: Jenkins, A.J., Toth, P.P. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-26681-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26681-2_3

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-26680-5

  • Online ISBN: 978-3-031-26681-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics