Skip to main content

Scabies Multi-Omics to Identify Novel Diagnostic or Therapeutic Targets

  • Chapter
  • First Online:
Scabies
  • 199 Accesses

Abstract

In recent decades, substantial progress has been made in genome and transcriptome sequencing, assembly, annotation and analyses of many parasites with socioeconomic impact. This progress has upgraded our understanding of many parasitic pathogens at the molecular level. However, compared with ticks and insects, the research fields of functional genomics, transcriptomics, proteomics and metabolomics of free-living and parasitic mites are still in development. In particular, there are major gaps in our knowledge of the molecular biology of the scabies mite. Currently, molecular resources (including draft genomic, transcriptomic and proteomic databases) are being generated to provide a foundation that will allow us to begin exploring the molecular biology of this species. In this chapter, we provide an update on the recent advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature. 2011;479(7374):487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics. 2013;14(1):815.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao JY, Zhao XT, Sun JT, Zou LF, Yang SX, Han X, et al. Transcriptome and proteome analyses reveal complex mechanisms of reproductive diapause in the two-spotted spider mite, Tetranychus urticae. Insect Mol Biol. 2017;26(2):215–32.

    Article  CAS  PubMed  Google Scholar 

  4. Hoy MA, Jeyaprakash A. Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control. 2005;32(3):427–41.

    Article  Google Scholar 

  5. Jeyaprakash A, Hoy MA. The nuclear genome of the phytoseiid Metaseiulus occidentalis (Acari: Phytoseiidae) is among the smallest known in arthropods. Exp Appl Acarol. 2009;47(4):263–73.

    Article  CAS  PubMed  Google Scholar 

  6. Hoy MA, Yu F, Meyer JM, Tarazona OA, Jeyaprakash A, Wu K. Transcriptome sequencing and annotation of the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae): a cautionary tale about possible contamination by prey sequences. Exp Appl Acarol. 2013;59(3):283–96.

    Article  CAS  PubMed  Google Scholar 

  7. Chan T-F, Ji K-M, Yim AK-Y, Liu X-Y, Zhou J-W, Li R-Q, et al. The draft genome, transcriptome, and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. J Allergy Clin Immunol. 2015;135(2):539–48.

    Article  CAS  PubMed  Google Scholar 

  8. Liu X-Y, Yang KY, Wang M-Q, Kwok JS-L, Zeng X, Yang Z, et al. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens. J Allergy Clin Immunol. 2018;141(6):2268–71. e8

    Article  CAS  PubMed  Google Scholar 

  9. Rider SD Jr, Morgan MS, Arlian LG. Allergen homologs in the Euroglyphus maynei draft genome. PloS One. 2017;12(8):e0183535.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bordas-Le Floch V, Le Mignon M, Bussieres L, Jain K, Martelet A, Baron-Bodo V, et al. A combined transcriptome and proteome analysis extends the allergome of house dust mite Dermatophagoides species. PloS One. 2017;12(10):e0185830.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Waldron R, McGowan J, Gordon N, McCarthy C, Mitchell EB, Fitzpatrick DA. Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PloS One. 2019;14(5):e0216171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ho WE, Xu Y-J, Cheng C, Peh HY, Tannenbaum SR, Wong WF, et al. Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. J Proteome Res. 2014;13(8):3771–82.

    Article  CAS  PubMed  Google Scholar 

  13. Shao R, Mitani H, Barker SC, Takahashi M, Fukunaga M. Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. J Mol Evol. 2005;60(6):764–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kim JH, Roh JY, Kwon DH, Kim YH, Yoon KA, Yoo S, et al. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis. Parasit Vectors. 2014;7(1):279.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ponnusamy L, Willcox AC, Roe RM, Davidson SA, Linsuwanon P, Schuster AL, et al. Bacterial microbiome of the chigger mite Leptotrombidium imphalum varies by life stage and infection with the scrub typhus pathogen Orientia tsutsugamushi. PloS One. 2018;13(12):e0208327.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park EC, Lee S-Y, Yun SH, Choi C-W, Lee H, Song HS, et al. Clinical proteomic analysis of scrub typhus infection. Clin Proteomics. 2018;15(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moro CV, Thioulouse J, Chauve C, Zenner L. Diversity, geographic distribution, and habitat-specific variations of microbiota in natural populations of the chicken mite, Dermanyssus gallinae. J Med Entomol. 2011;48(4):788–96.

    Article  PubMed  Google Scholar 

  18. Hubert J, Erban T, Kopecky J, Sopko B, Nesvorna M, Lichovnikova M, et al. Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb Ecol. 2017;74(4):947–60.

    Article  PubMed  Google Scholar 

  19. Schicht S, Qi W, Poveda L, Strube C. Whole transcriptome analysis of the poultry red mite Dermanyssus gallinae (De Geer, 1778). Parasitology. 2014;141(3):336–46.

    Article  CAS  PubMed  Google Scholar 

  20. Schicht S, Qi W, Poveda L, Strube C. The predicted secretome and transmembranome of the poultry red mite Dermanyssus gallinae. Parasit Vectors. 2013;6(1):259.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bartley K, Wright HW, Huntley JF, Manson ED, Inglis NF, McLean K, et al. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae). Int J Parasitol. 2015;45(13):819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eremeeva M, Balayeva N, Ignatovich V, Raoult D. Genomic study of rickettsia akari by pulsed-field gel electrophoresis. J Clin Microbiol. 1995;33(11):3022–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niu D, Wang R, Zhao Y, Yang R, Hu L. De novo RNA-seq and functional annotation of Ornithonyssus bacoti. Exp Appl Acarol. 2018;75(2):191–208.

    Article  CAS  PubMed  Google Scholar 

  24. Guo Y, Wang R, Zhao Y, Niu D, Gong X, Hu L. Study on the relationship between microbial composition and living environment in important medical mites based on Illumina MiSeq sequencing technology. J Med Entomol. 2020;57:1049.

    Article  CAS  PubMed  Google Scholar 

  25. Fischer K, Holt DC, Harumal P, Currie BJ, Walton SF, Kemp DJ. Generation and characterization of cDNA clones from Sarcoptes scabiei var. hominis for an expressed sequence tag library: identification of homologues of house dust mite allergens. Am J Trop Med Hyg. 2003;68(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  26. Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K. Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus. Parasit Vectors. 2012;5(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rider SD, Morgan MS, Arlian LG. Draft genome of the scabies mite. Parasit Vectors. 2015;8(1):585.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morgan MS, Arlian LG, Rider SD Jr, Grunwald WC Jr, Cool DR. A proteomic analysis of Sarcoptes scabiei (Acari: Sarcoptidae). J Med Entomol. 2016;53(3):553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Arlian LG, Morgan MS, Rider SD. Sarcoptes scabiei: genomics to proteomics to biology. Parasit Vectors. 2016;9(1):380.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Swe PM, Zakrzewski M, Kelly A, Krause L, Fischer K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLoS Negl Trop Dis. 2014;8(5):e2897.

    Article  PubMed  PubMed Central  Google Scholar 

  31. DeCandia AL, Leverett KN. Of microbes and mange: consistent changes in the skin microbiome of three canid species infected with Sarcoptes scabiei mites. Parasit Vectors. 2019;12(1):1–10.

    Article  Google Scholar 

  32. Swe PM, Zakrzewski M, Waddell R, Sriprakash KS, Fischer K. High-throughput metagenome analysis of the Sarcoptes scabiei internal microbiota and in-situ identification of intestinal Streptomyces sp. Sci Rep. 2019;9(1):1–11.

    Article  CAS  Google Scholar 

  33. He R, Gu X, Lai W, Peng X, Yang G. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response. PloS One. 2017;12(5):e0177733.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao Y-E, Xu J-R, Hu L, Wu L-P, Wang Z-H. Complete sequence analysis of 18S rDNA based on genomic DNA extraction from individual Demodex mites (Acari: Demodicidae). Exp Parasitol. 2012;131(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  35. Palopoli MF, Minot S, Pei D, Satterly A, Endrizzi J. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics. 2014;15(1):1124.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Murillo N, Aubert J, Raoult D. Microbiota of Demodex mites from rosacea patients and controls. Microb Pathog. 2014;71:37–40.

    Article  PubMed  Google Scholar 

  37. Burgess ST, Frew D, Nunn F, Watkins CA, McNeilly TN, Nisbet AJ, et al. Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis. BMC Genomics. 2010;11(1):624.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Burgess ST, Nisbet AJ, Kenyon F, Huntley JF. Generation, analysis and functional annotation of expressed sequence tags from the ectoparasitic mite Psoroptes ovis. Parasit Vectors. 2011;4(1):145.

    Article  PubMed  PubMed Central  Google Scholar 

  39. He M-L, Xu J, He R, Shen N-X, Gu X-B, Peng X-R, et al. Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages. Parasit Vectors. 2016;9(1):570.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Burgess ST, Bartley K, Marr EJ, Wright HW, Weaver RJ, Prickett JC, et al. Draft genome assembly of the sheep scab mite, Psoroptes ovis. Genome Announc. 2018;6(16):e00265–18.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burgess ST, Marr EJ, Bartley K, Nunn FG, Down RE, Weaver RJ, et al. A genomic analysis and transcriptomic atlas of gene expression in Psoroptes ovis reveals feeding-and stage-specific patterns of allergen expression. BMC Genomics. 2019;20(1):756.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hogg J, Lehane M. Microfloral diversity of cultured and wild strains of Psoroptes ovis infesting sheep. Parasitology. 2001;123(5):441–6.

    Article  CAS  PubMed  Google Scholar 

  43. Dermauw W, Vanholme B, Tirry L, Van Leeuwen T. Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome. 2010;53(4):285–301.

    Article  CAS  PubMed  Google Scholar 

  44. Burns AR, Luciani GM, Musso G, Bagg R, Yeo M, Zhang Y, et al. Caenorhabditis elegans is a useful model for anthelmintic discovery. Nat Commun. 2015;6:7485.

    Article  CAS  PubMed  Google Scholar 

  45. Khila A, Grbić M. Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the distal-less gene. Dev Genes Evol. 2007;217(3):241–51.

    Article  CAS  PubMed  Google Scholar 

  46. Mofiz E, Holt DC, Seemann T, Currie BJ, Fischer K, Papenfuss AT. Genomic resources and draft assemblies of the human and porcine varieties of scabies mites, Sarcoptes scabiei var hominis and var suis. Gigascience. 2016;5(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mofiz E, Seemann T, Bahlo M, Holt D, Currie BJ, Fischer K, et al. Mitochondrial genome sequence of the scabies mite provides insight into the genetic diversity of individual scabies infections. PLoS Negl Trop Dis. 2016;10(2):e0004384.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fischer K, Holt D, Currie B, Kemp D. Scabies: important clinical consequences explained by new molecular studies. Adv Parasitol. 2012;79:339–73.

    Article  PubMed  Google Scholar 

  49. Mika A, Reynolds SL, Mohlin FC, Willis C, Swe PM, Pickering DA, et al. Novel scabies mite serpins inhibit the three pathways of the human complement system. PloS One. 2012;7(7):e40489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beckham SA, Boyd SE, Reynolds S, Willis C, Johnstone M, Mika A, et al. Characterization of a serine protease homologous to house dust mite group 3 allergens from the scabies mite Sarcoptes scabiei. J Biol Chem. 2009;284(49):34413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mika A, Goh P, Holt DC, Kemp DJ, Fischer K. Scabies mite Peritrophins are potential targets of human host innate immunity. PLoS Negl Trop Dis. 2011;5(9):e1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahmood W, Viberg LT, Fischer K, Walton SF, Holt DC. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules. PLoS Negl Trop Dis. 2013;7(11):e2525.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Reynolds SL, Pike RN, Mika A, Blom AM, Hofmann A, Wijeyewickrema LC, et al. Scabies mite inactive serine proteases are potent inhibitors of the human complement lectin pathway. PLoS Negl Trop Dis. 2014;8(5):e2872.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Swe PM, Fischer K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Negl Trop Dis. 2014;8(6):e2928.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hogg JC, Lehane MJ. Identification of bacterial species associated with the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1999;65(9):4227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gonzalez VL, Devine AM, Trizna M, Mulcahy DG, Barker KB, Coddington JA. Open access genomic resources for terrestrial arthropods. Curr Opin Insect Sci. 2018;25:91–8.

    Article  PubMed  Google Scholar 

  57. Poelchau MF, Chen MM, Lin YY, Childers CP. Navigating the i5k workspace@NAL: a resource for arthropod genomes. Methods Mol Biol. 2018;1757:557–77.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang J, Huang J, Zhu F, Zhang J. Differential gene expression in Anopheles stephensi following infection with drug-resistant Plasmodium yoelii. Parasit Vectors. 2017;10(1):401.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bonizzoni M, Ochomo E, Dunn WA, Britton M, Afrane Y, Zhou G, et al. RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs. Parasit Vectors. 2015;8:474.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hugo RLE, Birrell GW. Proteomics of anopheles vectors of malaria. Trends Parasitol. 2018;34(11):961–81.

    Article  CAS  PubMed  Google Scholar 

  61. St Laurent G, Savva YA, Kapranov P. Dark matter RNA: an intelligent scaffold for the dynamic regulation of the nuclear information landscape. Front Genet. 2012;3:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown JB, Celniker SE. Lessons from modENCODE. Annu Rev Genomics Hum Genet. 2015;16:31–53.

    Article  CAS  PubMed  Google Scholar 

  63. Korhonen PK, Hall RS, Young ND, Gasser RB. Common workflow language (CWL)-based software pipeline for de novo genome assembly from long- and short-read data. Gigascience. 2019;8(4):giz014.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Korhonen PK, Young ND, Gasser RB. Making sense of genomes of parasitic worms: tackling bioinformatic challenges. Biotechnol Adv. 2016;34(5):663–86.

    Article  PubMed  Google Scholar 

  65. Niu J, Shen G, Christiaens O, Smagghe G, He L, Wang J. Beyond insects: current status and achievements of RNA interference in mite pests and future perspectives. Pest Manag Sci. 2018;74(12):2680–7.

    Article  CAS  PubMed  Google Scholar 

  66. Bier E, Harrison MM, O'Connor-Giles KM, Wildonger J. Advances in engineering the Fly genome with the CRISPR-Cas system. Genetics. 2018;208(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  67. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10(2):94–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell. 2004;117(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  69. Cerutti H, Casas-Mollano JA. On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet. 2006;50(2):81–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernando DD, Marr EJ, Zakrzewski M, Reynolds SL, Burgess STG, Fischer K. Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets (Report). Parasit Vectors. 2017;10(1):289.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Korhonen PK, et al. High-quality nuclear genome for Sarcoptes scabiei—a critical resource for a neglected parasite. PLoS Negl Trop Dis. 2020;14(10):e0008720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Birchler JA. Ubiquitous RNA-dependent RNA polymerase and gene silencing. Genome Biol. 2009;10(11):243.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hammond SM. Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett. 2005;579(26):5822–9.

    Article  CAS  PubMed  Google Scholar 

  75. Fernando DD, Korhonen PK, Gasser RB, Fischer K. An RNA interference tool to silence genes in Sarcoptes scabiei eggs. Int J Mol Sci. 2022;23(2):873. https://doi.org/10.3390/ijms23020873.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, K., Lu, H., Fernando, D.D., Gasser, R.B. (2023). Scabies Multi-Omics to Identify Novel Diagnostic or Therapeutic Targets. In: Fischer, K., Chosidow, O. (eds) Scabies. Springer, Cham. https://doi.org/10.1007/978-3-031-26070-4_6

Download citation

Publish with us

Policies and ethics