Skip to main content

The Preclinical Uses of Isolated Heart Models and Anatomic Specimens as Means to Enhance the Design and Testing of Cardiac Valve Therapies

  • Chapter
  • First Online:
Heart Valves

Abstract

In recent years, the preclinical uses of both perfusion fixed cadaveric specimens and reanimated heart models have aided in the development of our improved understanding of the device-tissue interface as well as contributed to the rapid evolution of surgically and percutaneously delivered valve therapies. This chapter describes a novel series of techniques utilized within the Visible Heart® laboratories for the past 25 years by engineers, scientists, and anatomists to visualize and analyze the forms and functions of the four cardiac valves and assess potential repair or replacement therapies. The study of reanimated large mammalian hearts (including human) and specially prepared anatomical specimens using various clinical and nonclinical imaging modalities has provided critical understanding for both design engineers and clinicians that seek to develop and/or employ valve repair approaches for patients with acquired or congenital heart valve defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

MRI:

Magnetic resonance imaging

VR:

Virtual reality

References

  1. Anderson RH, Becker AE (1993) The heart: structure in health and disease. Gower Medical Pub, London/New York

    Google Scholar 

  2. Weinhaus AJ, Roberts KP (2009) Anatomy of the human heart. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa

    Google Scholar 

  3. Loukas M, Sullivan A, Tubbs RS et al (2010) Chiari’s network: review of the literature. Surg Radiol Anat 32:895–901

    Article  PubMed  Google Scholar 

  4. Maselli D, Guarracino F, Chiaramonti F et al (2006) Percutaneous mitral annuloplasty: an anatomic study of human coronary sinus and its relation with mitral valve annulus and coronary arteries. Circulation 114:377–380

    Article  PubMed  Google Scholar 

  5. Anderson SE, Quill JL, Iaizzo PA (2008) Venous valves within left ventricular coronary veins. J Interv Card Electrophysiol 23:95–99

    Article  PubMed  Google Scholar 

  6. Bateman MG, Iaizzo PA (2011) Comparative imaging of cardiac structures and function for the optimization of transcatheter approaches for valvular and structural heart disease. Int J Cardiovasc Imaging 27:1223–1234

    Article  PubMed  Google Scholar 

  7. Anderson RH, Cook AC (2002) Attitudinally correct nomenclature. Heart 87:503–506

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tajik AJ, Seward JB, Hagler DJ et al (1978) Two dimensional real-time ultrasonic imaging of the heart and great vessels. Mayo Clin Proc 53:271–303

    CAS  PubMed  Google Scholar 

  9. Edwards WD, Tajik AJ, Seward JB (1981) Standardized nomenclature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc 56:479–497

    CAS  PubMed  Google Scholar 

  10. Thomas AC, Davies MJ (1985) The demonstration of cardiac pathology using perfusion-fixation. Histopathology 9:5–19

    Article  CAS  PubMed  Google Scholar 

  11. Kilner PJ, Ho SY, Anderson RH (1989) Cardiovascular cavities cast in silicone rubber as an adjunct to post-mortem examination of the heart. Int J Cardiol 22:99–107

    Article  CAS  PubMed  Google Scholar 

  12. Zhingre Sanchez JD, Schinstock EA, Bateman MG, Iaizzo PA (2019) The development and testing of a fixation apparatus for inducing the coaptation of the cardiac atrioventricular valves. ASME

    Book  Google Scholar 

  13. Quill JL, Hill AJ, Laske TG et al (2009) Mitral leaflet anatomy revisited. J Thorac Cardiovasc Surg 137:1077–1081

    Article  PubMed  Google Scholar 

  14. Quill JL, Geesling AG, Iaizzo PA (2009) Transcatheter aortic valve deployment: interactions between native leaflets and coronary ostia. J Med Devices Trans ASME 3:027530

    Article  Google Scholar 

  15. http://www.vhlab.umn.edu/atlas/index.shtml. Accessed 15 Mar 2021

  16. Ton-Nu T, Levine RA, Handschumacher MD et al (2006) Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation 114:143–149

    Article  PubMed  Google Scholar 

  17. Plass A, Valenta I, Gaemperli O et al (2008) Assessment of coronary sinus anatomy between normal and insufficient mitral valves by multi-slice computer tomography for mitral annuloplasty device implantation. Eur J Cardiothorac Surg 33:583–589

    Article  PubMed  Google Scholar 

  18. Tops L, Wood D, Delgado V et al (2008) Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging 1:321–330

    Article  PubMed  Google Scholar 

  19. Salton CJ, Chuang ML, O’Donnell CJ et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. J Am Coll Cardiol 39:1055–1060

    Article  PubMed  Google Scholar 

  20. Eggen MD, Bateman MG, Iaizzo PA (2011) Methods to prepare perfusion fixed cardiac specimens for multimodal imaging: the use of formalin and agar gels. J Med Devices Trans ASME 5:027539

    Article  Google Scholar 

  21. Hołda MK, Zhingre Sanchez JD, Bateman MG, Iaizzo PA (2019) Right atrioventricular valve leaflet morphology redefined: implications for transcatheter repair procedures. JACC Cardiovasc Interv 12(2):169–178

    Article  PubMed  Google Scholar 

  22. Mattson AR, Soto MJ, Iaizzo PA (2018) The quantitative assessment of epicardial fat distribution on human hearts: implications for epicardial electrophysiology. Clin Anat 31(5):661–666

    Article  PubMed  Google Scholar 

  23. Sanchez JZ (2021) Anatomical, structural, and device-tissue characterizations of the atrioventricular valves, and associated structures: implications for transcatheter valve repairs and/or replacement therapies. PhD dissertation, Department of Surgery, University of Minnesota, Minneapolis

    Google Scholar 

  24. Sacco F et al (2018) Left ventricular trabeculations decrease the wall shear stress and increase the intra-ventricular pressure drop in CFD simulations. Front Physiol 9:458

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eggen MD, Swingen CM, Iaizzo PA (2009) Analysis of fiber orientation in normal and failing human hearts using diffusion tensor MRI. In: 2009 IEEE international symposium on biomedical imaging: from nano to macro, pp 642–645

    Google Scholar 

  26. Messika-Zeitoun D, Serfaty J-M, Brochet E et al (2009) Multimodal assessment of the aortic annulus diameter. J Am Coll Cardiol 55:186–194

    Article  Google Scholar 

  27. Richards AL, Cook RC, Bolotin G et al (2009) A dynamic heart system to facilitate the development of mitral valve repair techniques. Ann Biomed Eng 37:651–660

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nanthakumar K, Jalife J, Masse S et al (2007) Optical mapping of Langendorff-perfused human hearts: establishing a model for the study of ventricular fibrillation in humans. Am J Physiol Heart Circ Physiol 293:H875–H880

    Article  CAS  PubMed  Google Scholar 

  29. Araki Y, Usui A, Kawaguchi O et al (2005) Pressure–volume relationship in isolated working heart with crystalloid perfusate in swine and imaging the valve motion. Eur J Cardiothorac Surg 28:435–442

    Article  PubMed  Google Scholar 

  30. de Weger A, van Tuijl S, Stijnen M et al (2010) Direct endoscopic visual assessment of a transcatheter aortic valve implantation and performance I the physioheart, an isolated working heart platform. Circulation 121:e261–e262

    Article  PubMed  Google Scholar 

  31. Transmedics. OCS heart for HCP’s – Transmedics [Online]. Available: https://www.transmedics.com/ocs-hcp-heart/. Accessed 30 Apr 2021

  32. Langendorff O (1895) Untersuchungen am uberlebenden Saugenthierherzen [Investigations on the surviving mammalian heart]. Pflugers Arch 61:291–332

    Article  Google Scholar 

  33. Chinchoy E, Soule CL, Houlton AJ et al (2000) Isolated four-chamber working swine heart model. Ann Thorac Surg 5:1607–1614

    Article  Google Scholar 

  34. Hill AJ, Laske TG, Coles JA Jr et al (2005) In vitro studies of human hearts. Ann Thorac Surg 79:168–177

    Article  PubMed  Google Scholar 

  35. Sigg DC, Iaizzo PA (2006) In vivo versus in vitro comparison of swine cardiac performance: induction of cardiodepression with halothane. Eur J Pharmacol 543(1–3):97–107

    Article  CAS  PubMed  Google Scholar 

  36. Valenzuela TF, Burzotta F, Iles TL, Lassen JF, Iaizzo PA (2021) Assessment of single and double coronary bifurcation stenting techniques using multimodal imaging and 3D modeling in reanimated swine hearts using Visible Heart® methodologies. Int J Cardiovasc Imaging 37(9):2591–2601

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sands MP, Rittenhouse EA, Mohri H et al (1969) An anatomical comparison of human, pig, calf, and sheep aortic valves. Ann Thorac Surg 8:407–414

    Article  CAS  PubMed  Google Scholar 

  38. Michaëlsson M, Ho SY (2000) Congenital heart malformations in mammals: an illustrated text. Imperial College Press, London/River Edge

    Book  Google Scholar 

  39. Hill A, Iaizzo PA (2009) Comparative cardiac anatomy. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa, pp 87–108

    Chapter  Google Scholar 

  40. Sanchez JZ, Iles T, Dvir D, Iaizzo P (2020) Direct visualisation of the BASILICA technique post TAVR to enhance coronary flow. EuroIntervention 16(8):680–681

    Article  Google Scholar 

  41. Zhingre Sanchez JD, Bateman MG, Iaizzo PA (2019) Multimodal imaging of a self-expanding transcatheter aortic valve replacement (TAVR) procedure in a reanimated human heart and post-implant analyses. Int J Cardiovasc Imaging 35(11):2135–2137

    Article  PubMed  Google Scholar 

  42. Sigg DC, Coles JA, Oeltgen PR et al (2002) Role of δ-opioid receptor agonists on infarct size reduction in swine. Am J Physiol Heart Circ Physiol 282:H1953–H1960

    Article  CAS  PubMed  Google Scholar 

  43. Iles TL et al (2016) Testing the efficacy of pharmacological agents in a pericardial target delivery model in the swine. J Vis Exp 113:52600

    Google Scholar 

  44. Schinstock E, Ramirez D, Iaizzo PA (2020, July) The development of pharmacologic control algorithms to optimize heart physiological functions during ex-vivo heart perfusion. Poster presentation in the annual international conferences of the IEEE Engineering in Medicine and Biology Society in conjunction with the annual conference of the Canadian Medical and Biological Engineering Society, Montreal, QC, Canada

    Google Scholar 

  45. Quill JL, Laske TG, Hill AJ et al (2007) Direct visualization of a transcatheter pulmonary valve implantation within the Visible Heart®: a glimpse into the future. Circulation 116:e548

    Article  PubMed  Google Scholar 

  46. Iaizzo PA, Hill AJ, Laske TG (2008) Cardiac device testing enhanced by simultaneous imaging modalities: the Visible Heart®, fluoroscopy, and echocardiography. Expert Rev Med Devices 5:51–58

    Article  PubMed  Google Scholar 

  47. Eggen M, Swingen C, Matta P et al (2009) Design of a novel perfusion system to perform MR imaging of an isolated beating heart. J Med Devices Trans ASME 3:027536

    Article  Google Scholar 

  48. Eggen MD, Bateman MG, Rolfes CD et al (2010) MRI assessment of pacing induced ventricular dyssynchrony in an isolated human heart. J Magn Reson Imaging 31:466–469

    Article  PubMed  PubMed Central  Google Scholar 

  49. Holm MA, Mattson A, Mattison L, Gaasedelen E, Zhingre Sanchez J, Iaizzo PA (2018) A portable ex vivo heart perfusion apparatus for cardiac CT imaging: Visible Heart(R) mobile. Paper presented at 2018 Design of Medical Devices Conference, DMD 2018, Minneapolis, MN, USA

    Google Scholar 

  50. Richardson E, Hill AJ, Skadsberg ND et al (2009) The pericardium. In: Iaizzo PA (ed) The handbook of cardiac anatomy, physiology, and devices, 2nd edn. Humana Press, Totowa, pp 125–136

    Chapter  Google Scholar 

  51. Wren C, O’Sullivan J (2001) Survival with congenital heart disease and need for follow up in adult life. Br Med J 85:438–443

    CAS  Google Scholar 

  52. Schievano S, Coats L, Migliavacca F et al (2007) Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson 9:687–695

    Article  PubMed  Google Scholar 

  53. Quill JL, Bateman MG, St. Louis JL et al (2010) Edge-to-edge repairs of P2 prolapsed mitral valves within isolated swine hearts. J Heart Valve Dis 20:5–12

    Google Scholar 

  54. Dobrzynski H, Li J, Tellez J et al (2005) Computer three-dimensional reconstruction of the sinoatrial node. Circulation 111:846–854

    Article  CAS  PubMed  Google Scholar 

  55. Chandler N, Aslanidi O, Buckley D et al (2011) Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat Rec (Hoboken) 294:970–979

    Article  PubMed  Google Scholar 

  56. Zhingre Sanchez JD, Iaizzo PA (2020) A novel transcatheter edge-to-edge suturing technique and prototype for repairing tricuspid valve regurgitation. ASME

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma A. Schinstock MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schinstock, E.A., Eggen, M.D., Iaizzo, P.A. (2023). The Preclinical Uses of Isolated Heart Models and Anatomic Specimens as Means to Enhance the Design and Testing of Cardiac Valve Therapies. In: Iaizzo, P.A., Iles, T.L., Griselli, M., St. Louis, J.D. (eds) Heart Valves. Springer, Cham. https://doi.org/10.1007/978-3-031-25541-0_19

Download citation

Publish with us

Policies and ethics