Skip to main content

Bioremediation: The Remedy to Expanding Pollution

  • Chapter
  • First Online:
Modern Approaches in Waste Bioremediation

Abstract

The worldwide population is growing at an astounding rate, with evaluations suggesting the increase to approximately 9 billion by 2050. The exhaustive agro-system and the industrial systems required to upkeep this huge number of societies will unavoidably become the basis of pollution (air, water, soil) buildup. Hydro systems have slight improved fare, having an approximation of 70% industrial waste that are discarded into nearby water bodies. The global generation of garbage is 1.3 billion tons per year, the mainstream trash is deposited in the sites of landfill or discarded in the oceans. The microorganisms are commonly acknowledged for its capability to disrupt the enormous variety of organic compounds and engross the inorganic substances. Presently, microorganism are used in treatment of pollution treatment through a process known as ‘bioremediation’. Bioremediation is the effective green process of removing stubborn contaminants from the environment through microorganism to decrease the level of pollution using the approach of biological degradation of pollutants into non-toxic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegradation 3(1):28–39

    Article  CAS  Google Scholar 

  • Aislabie J, Saul DJ, Foght JM (2006) Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10(3):171–179

    Article  CAS  Google Scholar 

  • Bhandari G (2018) Environmental nanotechnology: applications of nanoparticles for bioremediation. In: Approaches in bioremediation. Springer, Cham, pp 301–315

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Biores Technol 74(1):63–67

    Article  CAS  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34(3):597–601

    Article  CAS  Google Scholar 

  • Cases I, Lorenzo VD (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222

    CAS  Google Scholar 

  • Coulon F, Al Awadi M, Cowie W, Mardlin D, Pollard S, Cunningham C, … Paton GI (2010) When is a soil remediated? Comparison of biopiled and windrowed soils contaminated with bunker-fuel in a full-scale trial. Environ Pollution 158(10):3032–3040

    Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: importance and future perspectives. Current Sci, 1325–1335

    Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegradation 75:207–213

    Article  CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Biores Technol 101(6):1558–1569

    Article  CAS  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38(5):677–687

    Article  Google Scholar 

  • Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, … Talley LD (2012) Climate change impacts on marine ecosystems. Ann Rev Marine Sci 4:11–37

    Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8(3):268–275

    Article  Google Scholar 

  • Folch A, Vilaplana M, Amado L, Vicent T, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560

    Article  CAS  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: a review. J Hazard Mater 283:382–399

    Article  CAS  Google Scholar 

  • Frutos FG, Pérez R, Escolano O, Rubio A, Gimeno A, Fernandez MD, ... Laguna J (2012) Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: evaluation of bioremediation technologies. J Hazardous Mater 199:262–271

    Google Scholar 

  • Gidarakos E, Aivalioti M (2007) Large scale and long term application of bioslurping: the case of a Greek petroleum refinery site. J Hazard Mater 149(3):574–581

    Article  CAS  Google Scholar 

  • Giovanella P, Vieira GA, Otero IVR, Pellizzer EP, de Jesus Fontes B, Sette LD (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater 382:121024

    Article  CAS  Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegradation 89:103–109

    Article  CAS  Google Scholar 

  • Gupta K, Biswas R, Sarkar A (2020) Advancement of omics: prospects for bioremediation of contaminated soils. In: Microbial bioremediation & biodegradation. Springer, Singapore, pp 113–142

    Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manage 25(4):345–352

    Article  CAS  Google Scholar 

  • Höhener P, Ponsin V (2014) In situ vadose zone bioremediation. Curr Opin Biotechnol 27:1–7

    Article  Google Scholar 

  • Hussain S, Siddique T, Saleem M, Arshad M, Khalid A (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    Article  CAS  Google Scholar 

  • Ishii SI, Suzuki S, Tenney A, Norden-Krichmar TM, Nealson KH, Bretschger O (2015) Microbial metabolic networks in a complex electrogenic biofilm recovered from a stimulus-induced metatranscriptomics approach. Sci Rep 5(1):1–14

    Article  Google Scholar 

  • Khan MY, Swapna TH., Hameeda B, Reddy G (2015) Bioremediation of heavy metals using biosurfactants. Adv Biodegrad Bioremediat Ind Waste

    Google Scholar 

  • Khardenavis AA, Kapley A, Purohit HJ (2007) Simultaneous nitrification and denitrification by diverse Diaphorobacter sp. Appl Microbiol Biotechnol 77(2):403–409

    Article  CAS  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, ... Saxena AK (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollution Res 28(20):24917–24939

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17(1):6–15

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicology Food Technol 8(7):44–50

    Article  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    Article  CAS  Google Scholar 

  • Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439

    Article  CAS  Google Scholar 

  • Lee WC, Lee KH (2004) Applications of affinity chromatography in proteomics. Anal Biochem 324(1):1–10

    Article  CAS  Google Scholar 

  • Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Bio/technology 3(4):349–360

    Article  CAS  Google Scholar 

  • McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, Schenk PM (2008) Isolation and analysis of mRNA from environmental microbial communities. J Microbiol Methods 75(2):172–176

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  Google Scholar 

  • Mohan SV, Sirisha K, Rao NC, Sarma PN, Reddy SJ (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J Hazard Mater 116(1–2):39–48

    Article  CAS  Google Scholar 

  • Naik MG, Duraphe MD (2012) Review paper on-Parameters affecting bioremediation. Adv Res Pharmaceuticals Biol 2(3)

    Google Scholar 

  • Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    Article  CAS  Google Scholar 

  • Pandey A, Tripathi PH, Tripathi AH, Pandey SC, Gangola S (2019) Omics technology to study bioremediation and respective enzymes. In: Smart Bioremediation technologies. Academic Press, pp 23–43

    Google Scholar 

  • Prasad R, Nayak SC, Kharwar RN, Dubey NK (eds) (2018) Mycoremediation and environmental sustainability. Springer, Cham

    Google Scholar 

  • Qureshi A, Verma V, Kapley A, Purohit HJ (2007) Degradation of 4-nitroaniline by Stenotrophomonas strain HPC 135. Int Biodeterior Biodegradation 60(4):215–218

    Article  CAS  Google Scholar 

  • Rawat M, Rangarajan S (2019) Omics approaches for elucidating molecular mechanisms of microbial bioremediation. In: Smart bioremediation technologies. Academic Press, pp 191–203

    Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    Article  CAS  Google Scholar 

  • San Miguel A, Ravanel P, Raveton M (2013) A comparative study on the uptake and translocation of organochlorines by Phragmites australis. J Hazard Mater 244:60–69

    Article  Google Scholar 

  • Sanscartier D, Zeeb B, Koch I, Reimer K (2009) Bioremediation of diesel-contaminated soil by heated and humidified biopile system in cold climates. Cold Reg Sci Technol 55(1):167–173

    Article  Google Scholar 

  • Seigle-Murandi F, Guiraud P, Croize J, Falsen E, Eriksson KL (1996) Bacteria are omnipresent on Phanerochaete chrysosporium Burdsall. Appl Environ Microbiol 62(7):2477–2481

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103

    Article  Google Scholar 

  • Silva-Castro GA, Uad I, Gónzalez-López J, Fandiño CG, Toledo FL, Calvo C (2012) Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol Environ Policy 14(4):719–726

    Article  CAS  Google Scholar 

  • Singh BK, Nazaries L, Munro S, Anderson IC, Campbell CD (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72(11):7278–7285

    Article  CAS  Google Scholar 

  • Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegradation 101:56–65

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. Proceeding of the ICPE

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (2007) Treatment technologies for mercury in soil, waste, and water

    Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Padmanabhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anand, S., Padmanabhan, P. (2023). Bioremediation: The Remedy to Expanding Pollution. In: Shah, M.P. (eds) Modern Approaches in Waste Bioremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-24086-7_2

Download citation

Publish with us

Policies and ethics