Skip to main content

A Network Analysis Model to Measure the Walkability of Public Spaces

  • Conference paper
  • First Online:
Smart Energy for Smart Transport (CSUM 2022)

Abstract

The ongoing shift from auto-oriented urban planning policies has led to a growing interest in the creation and management of public spaces in cities. Public spaces can act as an attraction for a city and have been proven useful for urban revitalization. However, it is not uncommon for many of those spaces to stay underutilized. The aim of this paper is to create a walkability utility index for every road segment that, when correlated with the population density of each area, is used to define the overall accessibility of public space on foot. This culminates into a set of novel equipotential mapping samples applied to a set of urban segments of Greek cities. The results of this paper lead to a different way of evaluating existing city plans, offer a useful tool to authorities in implementing urban regeneration works aimed at improving citizen well-being and, a keyway of evaluating new public space development projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Georgi, J.N., Dimitriou, D.: The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. In: Science Direct Elsevier (2009). https://reader.elsevier.com/reader/sd/pii/S0360132309003564?token=B41D64AD5B6CC2BEAEF57DD779F81DAF9956A44EA10E9C7703BBA03705B7B85A70FA5AAE8522D9145001BC67067FF6A8&originRegion=eu-west-1&originCreation=20210925133336. Accessed 25 Sep 2021

  2. Gómez, F., Jabaloyes, J., Montero, L., De Vicente, V., Valcuende, M.: Green areas, the most significant indicator of the sustainability of cities: research on their utility for urban planning. J. Urban Plann. Dev. 137, 311–328 (2011). https://doi.org/10.1061/(ASCE)UP.1943-5444.0000060

    Article  Google Scholar 

  3. Richardson, E.A., Mitchell, R., Hartig, T., de Vries, S., Astell-Burt, T., Frumkin, H.: Green cities and health: a question of scale? J. Epidemiol. Community Health 66, 160–165 (2012). https://doi.org/10.1136/jech.2011.137240

    Article  Google Scholar 

  4. Giuliani, G., et al.: Modelling accessibility to urban green areas using open earth observations data: a novel approach to support the urban SDG in four European cities. Remote Sens. 13, 422 (2021). https://doi.org/10.3390/rs13030422

    Article  Google Scholar 

  5. Rafiemanzelat, R., Emadi, M.I., Kamali, A.J.: City sustainability: the influence of walkability on built environments. Transp. Res. Procedia 24, 97–104 (2017). https://doi.org/10.1016/j.trpro.2017.05.074

    Article  Google Scholar 

  6. Liao, B., van den Berg, P.E.W., van Wesemael, P.J.V., Arentze, T.A.: Empirical analysis of walkability using data from the Netherlands. Transp. Res. Part D: Transp. Environ. 85, 102390 (2020). https://doi.org/10.1016/j.trd.2020.102390

    Article  Google Scholar 

  7. Frank, L.D., Appleyard, B.S., Ulmer, J.M., Chapman, J.E., Fox, E.H.: Comparing walkability methods: creation of street smart walk score and efficacy of a code-based 3D walkability index. J. Transp. Health 21, 101005 (2021). https://doi.org/10.1016/j.jth.2020.101005

    Article  Google Scholar 

  8. UN Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agenda. Accessed 6 Apr 2022

  9. Turoń, K., Czech, P., Juzek, M.: The concept of a walkable city as an alternative form of urban mobility. SJSUTST 95, 223–230 (2017). https://doi.org/10.20858/sjsutst.2017.95.20

  10. D’Orso, G., Migliore, M.: A GIS-based method for evaluating the walkability of a pedestrian environment and prioritised investments. J. Transp. Geogr. 82, 102555 (2020). https://doi.org/10.1016/j.jtrangeo.2019.102555

    Article  Google Scholar 

  11. Majic, I., Pafka, E.: AwaP-IC—an open-source GIS tool for measuring walkable access. Urban Sci. 3, 48 (2019). https://doi.org/10.3390/urbansci3020048

    Article  Google Scholar 

  12. Koenig, J.G.: Indicators of urban accessibility: theory and application. Transportation 9, 145–172 (1980). https://doi.org/10.1007/BF00167128

    Article  Google Scholar 

  13. Walkable Communities. https://www.walkable.org/. Accessed 23 Mar 2021

  14. Moura, F., Cambra, P., Gonçalves, A.B.: Measuring walkability for distinct pedestrian groups with a participatory assessment method: a case study in Lisbon. Landsc. Urban Plan. 157, 282–296 (2017). https://doi.org/10.1016/j.landurbplan.2016.07.002

    Article  Google Scholar 

  15. Zhang, X., Melbourne, S., Sarkar, C., Chiaradia, A., Webster, C.: Effects of green space on walking: does size, shape and density matter? Urban Stud. 57, 3402–3420 (2020). https://doi.org/10.1177/0042098020902739

    Article  Google Scholar 

  16. Yan, X.: Evaluating household residential preferences for walkability and accessibility across three U.S. regions. Transp. Res. Part D: Transp. Environ., 80, 102255 (2020). https://doi.org/10.1016/j.trd.2020.102255

  17. Wachs, M., Kumagai, T.G.: Physical accessibility as a social indicator. Socioecon. Plann. Sci. 7, 437–456 (1973). https://doi.org/10.1016/0038-0121(73)90041-4

    Article  Google Scholar 

  18. Anjomshoaa, E., Lamit, H. B., Shafaghat, A., Khan, T.H.: Accessibility measurement techniques in urban studies: a comprehensive review. 16 (2017)

    Google Scholar 

  19. Pirie, G.H.: Measuring accessibility: a review and proposal. Environ. Plan A 11, 299–312 (1979). https://doi.org/10.1068/a110299

    Article  Google Scholar 

  20. Handy, S.: Is accessibility an idea whose time has finally come? Transp. Res. Part D: Transp. Environ., 83 (2020). https://doi.org/10.1016/j.trd.2020.102319

  21. Gould, P. R.: Spatial Diffusion (1969)

    Google Scholar 

  22. Ingram, D.R.: The concept of accessibility: a search for an operational form. Reg. Stud. 5, 101–107 (1971). https://doi.org/10.1080/09595237100185131

    Article  Google Scholar 

  23. Geurs, K. T.: Transport planning with accessibility indices in the Netherlands (2018)

    Google Scholar 

  24. Telega, A., Telega, I., Bieda, A.: Measuring walkability with GIS—methods overview and new approach proposal. Sustainability 13, 1883 (2021). https://doi.org/10.3390/su13041883

    Article  Google Scholar 

  25. Su, S., Pi, J., Xie, H., Cai, Z., Weng, M.: Community deprivation, walkability, and public health: Highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017). https://doi.org/10.1016/j.landusepol.2017.06.005

    Article  Google Scholar 

  26. (2020) What is Walkability? (And Why it Matters for Health, Resilience, Happiness). In: Blue Zones. https://www.bluezones.com/2020/05/what-is-walkability-and-why-it-matters-for-health-resiliency-happiness-and-sustainability/. Accessed 23 Mar 2021

  27. Knapskog, M., Hagen, O.H., Tennøy, A., Rynning, M.K.: Exploring ways of measuring walkability. Transp. Res. Procedia 41, 264–282 (2019). https://doi.org/10.1016/j.trpro.2019.09.047

    Article  Google Scholar 

  28. OpenStreetMap contributors (2022) OpenStreetMap. In: OpenStreetMap. https://www.openstreetmap.org/. Accessed 12 Apr 2022

  29. Abutaleb, K., Freddy Mudede, M., Nkongolo, N., Newete, S. W.: Estimating urban greenness index using remote sensing data: a case study of an affluent vs poor suburbs in the city of Johannesburg. Egyptian J. Remote Sens. Space Sci., (2020) https://doi.org/10.1016/j.ejrs.2020.07.002

  30. NDVI: Normalized Difference Vegetation Index For Agriculture. https://eos.com/make-an-analysis/ndvi/. Accessed 4 May 2021

  31. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer Math 1, 269–271 (1959). https://doi.org/10.1007/BF01386390

    Article  MathSciNet  MATH  Google Scholar 

  32. US Department of Transportation National Household Travel Survey. https://nhts.ornl.gov/. Accessed 15 Apr 2022

  33. Yang, Y., Diez-Roux, A.V.: Walking distance by trip purpose and population subgroups. Am. J. Prev. Med. 43, 11–19 (2012). https://doi.org/10.1016/j.amepre.2012.03.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Evangelidou .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 1.

Table 1. Factors and attributes relevant for assessing walkability [27].

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Binopoulos, A., Evangelidou, E., Vlachopanagiotis, T., Grizos, K. (2023). A Network Analysis Model to Measure the Walkability of Public Spaces. In: Nathanail, E.G., Gavanas, N., Adamos, G. (eds) Smart Energy for Smart Transport. CSUM 2022. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-031-23721-8_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23721-8_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23720-1

  • Online ISBN: 978-3-031-23721-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics