Skip to main content

Hinokitiol Attenuates LPS-Induced Arthritic Inflammation: A Preclinical Perspective

  • Chapter
  • First Online:
Computational Intelligence for Clinical Diagnosis

Abstract

The purpose of this research was to investigate the efficacy of the natural monoterpenoid hinokitiol in mitigating lipopolysaccharide (LPS)-induced arthritic inflammation in animal models. Arthritis was produced by intraplantar infusion of LPS (1 mg/Kg), and the effects of hinokitiol at doses of 0.2 mg/Kg (H-1) and 0.4 mg/Kg were evaluated. To test for an anti-arthritic effect, the animals’ paw volumes, arthritis indices, paw thicknesses, and percent changes, as well as their average body weights on days 0–7, 14–21, and 28, were measured. On day 28, we tested for changes in marker enzyme levels (serum glutamic-oxaloacetic transaminase (SGOT), alkaline phosphatase (ALP), and serum glutamic pyruvic transaminase (SGPT)), performed an antioxidant enzyme assay (superoxide dismutase (SOD), catalases (CAT), glutathione peroxidase (GPx)), tested for cartilage degrading enzymes (myeloperoxidase (MPO), cathepsin-D (CAT-D), elastase (ELA)), and examined red blood cells, white blood cells, and erythrocyte sedimentation rate (ESR). Paw volume, arthritic index, paw thickness, and percent change were all shown to be significantly reduced (P 0.05) in H-1, and H-2 treated rats, whereas body weight was found to be significantly restored. Animals treated with H-1 and H-2 had significantly lower levels of SGOT, ALP, SGPT, MPO, CAT-D, and ELA compared to controls (P 0.05). Lipoperoxidation inhibition and SOD activity were both significantly improved in H-1 and H-2 (P 0.05). Red blood cell (RBC) count increases significantly (P 0.05) in H-1 and H-2-treated animals, while white blood cell (WBC) and ESR drop significantly (P 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaji, M. (2008). Nozoe Tetsuo’s chemical research at Taihoku imperial university in Taiwan and its colonial context. Historia Scientiarum. Second series: International Journal of the History of Science Society of Japan, 18(2), 132–139.

    Google Scholar 

  2. Hirata, R., Ito, S., Eto, K., Sakuta, K., Mizoue, N., & Mitsuda, Y. (2015). Early growth of hinoki (Chamaecyparisobtusa) trees under different topography and edge aspects at a strip-clearcut site in Kyushu, Southern Japan. Journal of Forest Research, 20(6), 522–529.

    Article  Google Scholar 

  3. Shih, Y. H., Chang, K. W., Hsia, S. M., Yu, C. C., Fuh, L. J., Chi, T. Y., & Shieh, T. M. (2013). In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiological Research, 168(5), 254–262.

    Article  Google Scholar 

  4. Inamori, Y., Shinohara, S., Tsujibo, H., Okabe, T., Morita, Y., Sakagami, Y., Kumeda, Y., & Ishida, N. (1999). Antimicrobial activity and metalloprotease inhibition of hinokitiol-related compounds, the constituents of Thujopsisdolabrata S. and Z. hondai MAK. Biological and Pharmaceutical Bulletin, 22(9), 990–993.

    Article  Google Scholar 

  5. Krenn, B. M., Gaudernak, E., Holzer, B., Lanke, K., Van Kuppeveld, F. J. M., & Seipelt, J. (2009). Antiviral activity of the zinc ionophorespyrithione and hinokitiol against picornavirus infections. Journal of Virology, 83(1), 58–64.

    Article  Google Scholar 

  6. Yang, P. S., Wang, M. J., Jayakumar, T., Chou, D. S., Ko, C. Y., Hsu, M. J., & Hsieh, C. Y. (2015). Antiproliferative activity of hinokitiol, a tropolone derivative, is mediated via the inductions of p-JNK and p-PLCγ1 signaling in PDGF-BB-stimulated vascular smooth muscle cells. Molecules, 20(5), 8198–8212.

    Article  Google Scholar 

  7. Lee, J. H., Moon, J. H., Lee, Y. J., & Park, S. Y. (2017). SIRT1, a class III histone deacetylase, regulates LPS-induced inflammation in human keratinocytes and mediates the anti-inflammatory effects of hinokitiol. Journal of Investigative Dermatology., 137(6), 1257–1266.

    Article  Google Scholar 

  8. El Hachlafi, N., Lakhdar, F., Khouchlaa, A., Bakrim, S., El Omari, N., Balahbib, A., Shariati, M. A., Zengin, G., Fikri-Benbrahim, K., Orlando, G., & Ferrante, C. (2021). Health benefits and pharmacological properties of hinokitiol. Processes, 9(9), 1680.

    Article  Google Scholar 

  9. Imai, N., Doi, Y., Nabae, K., Tamano, S., Hagiwara, A., Kawabe, M., Ichihara, T., Ogawa, K., & Shirai, T. (2006). Lack of hinokitiol (beta-thujaplicin) carcinogenicity in F344/DuCrj rats. The Journal of Toxicological Sciences, 31(4), 357–370.

    Article  Google Scholar 

  10. Arden, N., & Nevitt, M. C. (2006). Osteoarthritis: Epidemiology. Best Practice & Research Clinical Rheumatology, 20(1), 3–25.

    Article  Google Scholar 

  11. Kalia, M. (2002). Assessing the economic impact of stress — The modern day hidden epidemic. Metabolism-Clinical and Experimental, 51(6), 49–53.

    Article  Google Scholar 

  12. Korotaeva, T. V. (2014). Psoriatic arthritis: Classification, clinical presentation, diagnosis, treatment. Rheumatology Science and Practice, 52(6), 650–659.

    Article  Google Scholar 

  13. Teoh, N. C., & Farrell, G. C. (2003). Hepatotoxicity associated with non-steroidal anti-inflammatory drugs. Clinics in Liver Disease, 7(2), 401–413.

    Article  Google Scholar 

  14. Buchman, A. L. (2001). Side effects of corticosteroid therapy. Journal of Clinical Gastroenterology, 33(4), 289–294.

    Article  Google Scholar 

  15. Albrecht, K., & M ler-Ladner, U. (2010). Side effects and management of side effects of methotrexate in rheumatoid arthritis. Clinical and Experimental Rheumatology-Incl Supplements, 28(5), S95.

    Google Scholar 

  16. Jayakumar, T., Liu, C. H., Wu, G. Y., Lee, T. Y., Manubolu, M., Hsieh, C. Y., Yang, C. H., & Sheu, J. R. (2018). Hinokitiol inhibits migration of A549 lung cancer cells via suppression of MMPs and induction of antioxidant enzymes and apoptosis. International Journal of Molecular Sciences, 19(4), 939.

    Article  Google Scholar 

  17. Abu-Ghefreh, A. A. A., & Masocha, W. (2010). Enhancement of antinociception by co-administration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naïve mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskeletal Disorders, 11, 276–282.

    Article  Google Scholar 

  18. Gunjegaonkar, S. M., & Shanmugarajan, T. S. (2019). Methyl jasmonate a stress phytohormone attenuates LPS induced in vivo and in vitro arthritis. Molecular Biology Reports, 46(1), 647–656.

    Article  Google Scholar 

  19. Shanmugarajan, T. S. (2018). Potential of plant stress hormone methyl Jasmonate against lipopolysaccharide attenuated oxidative stress and arthritis in experimental animals. International Journal of Green Pharmacy (IJGP), 12(03).

    Google Scholar 

  20. Arulmozhi, S., Mazumder, P. M., Sathiyanarayanan, L., & Ashok, P. (2011). Anti-arthritic and antioxidant activity of leaves of Alstoniascholaris Linn. R. Br. European Journal of Integrative Medicine, 3(2), e83–e90.

    Article  Google Scholar 

  21. Kumar, N., Singh, S., Patro, N., & Patro, I. (2009). Evaluation of protective efficacy of Spirulinaplatensis against collagen-induced arthritis in rats. Inflammopharmacology, 17(3), 181–190.

    Article  Google Scholar 

  22. Lin, B., Zhao, Y., Han, P., Yue, W., Ma, X. Q., Rahman, K., Zheng, C. J., Qin, L. P., & Han, T. (2014). Anti-arthritic activity of Xanthium strumarium L. extract on complete Freund’s adjuvant induced arthritis in rats. Journal of Ethnopharmacology, 155(1), 248–255.

    Article  Google Scholar 

  23. Sadiq, U., Mishrab, N. K., Kaushal, P., Mir, S., Nehaa, M. A., Sayeed, A., et al. (2012). Protective effect of rutin in attenuation of collagen-induced arthritis in wistar rat by inhibiting inflammation and oxidative stress. Indian Journal of Rheumatology, 7, 191–198.

    Article  Google Scholar 

  24. Umar, S., Zargan, J., Umar, K., Ahmad, S., Katiyar, C. K., & Khan, H. A. (2012). Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in wistar rats. Chemico-Biological Interactions, 197, 40–46.

    Article  Google Scholar 

  25. Nam, J. H., Jung, H. J., Choi, J., Lee, K. T., & Park, H. J. (2006). The anti-gastropathic and antirheumatic effect of niga-ichigoside F1 and 23-hydroxytormentic acid isolated from the unripe fruits of Rubuscore anus in a rat model. Biological & Pharmaceutical Bulletin, 29, 967–970.

    Article  Google Scholar 

  26. Kilimozhi, D., Parthasarathy, V., & Amuthavalli, N. (2009). Effect of Clerodendrumphlomidis on adjuvant induced arthritis in rats: A radiographic densitometric analysis. International Journal of PharmTech Research, 1, 1434–1441.

    Google Scholar 

  27. Mamatha, K., Rodda, H. C., Ciddi, V., & Bookya, K. (2013). Anti-arthritic activity of root bark of Oroxylumindicum (L.) vent against adjuvant-induced arthritis. Pharmacognosy Research, 5(2), 121–128.

    Article  Google Scholar 

  28. Ghai, C. L. (2012). A textbook of practical physiology. JP Medical Ltd.

    Google Scholar 

  29. Nam, J., Perera, P., Liu, J., Wu, L. C., Rath, B., Butterfield, T. A., & Agarwal, S. (2011). Transcriptome-wide gene regulation by gentle treadmill walking during the progression of monoiodoacetate-induced arthritis. Arthritis and Rheumatism, 63(6), 1613–1625.

    Article  Google Scholar 

  30. Bigoniya, P., Singh, A., & Singh, S. (2013). Analgesic, anti-inflammatory and anti-arthritic activity of Euphorbia thymifolia Linn phytosterol fraction. Journal of Pharmacy Research, 1(2), 130–134.

    Google Scholar 

  31. Holmdahl, R., Lorentzen, J. C., Lu, S., Olofsson, P., Wester, L., Holmberg, J., & Pettersson, U. (2001). Arthritis induced in rats with non-immunogenic adjuvants as models for rheumatoid arthritis. Immunological Reviews, 184(1), 184–202.

    Article  Google Scholar 

  32. Sharma, J. N., Srivastava, K. C., & Gan, E. K. (1994). Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology, 49(5), 314–318.

    Article  Google Scholar 

  33. Riesbeck, K. (2002). Immunomodulating activity of quinolones. Journal of Chemotherapy, 14(1), 3–12.

    Article  Google Scholar 

  34. Ohgami, K., Shiratori, K., Kotake, S., Nishida, T., Mizuki, N., Yazawa, K., & Ohno, S. (2003). Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Investigative Ophthalmology & Visual Science, 44(6), 2694–2701.

    Article  Google Scholar 

  35. Pang, T., Wang, J., Benicky, J., & Saavedra, J. M. (2012). Minocycline ameliorates LPS-induced inflammation in human monocytes by novel mechanisms including LOX-1, Nur77 and LITAF inhibition. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820(4), 503–510.

    Article  Google Scholar 

  36. Dong, Z., & Yuan, Y. (2018). Accelerated inflammation and oxidative stress induced by LPS in acute lung injury: Ιnhibition by ST1926. International Journal of Molecular Medicine, 41(6), 3405–3421.

    Google Scholar 

  37. Granado, M., Priego, T., Martín, A. I., Villanúa, M. Á., & López-Calderón, A. (2005). Ghrelin receptor agonist GHRP-2 prevents arthritis-induced increase in E3 ubiquitin-ligating enzymes MuRF1 and MAFbx gene expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 289(6), E1007–E1014.

    Article  Google Scholar 

  38. Aydin, B., & Akar, A. (2011). Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Archives of Medical Research, 42(4), 261–267.

    Article  Google Scholar 

  39. Olszewska-Slonina, D., Matewski, D., Jung, S., Olszewski, K. J., Czajkowski, R., Braszkiewicz, J., Wozniak, A., & Kowaliszyn, B. (2013). The activity of cathepsin D and alpha-1 antitrypsin in hip and knee osteoarthritis. Acta Biochimica Polonica, 60(1).

    Google Scholar 

  40. Olszewska-Slonina, D., Jung, S., Matewski, D., Olszewski, K. J., Krzyzynska-Malinowska, E., Braszkiewicz, A., & Kowaliszyn, B. (2015). Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scandinavian Journal of Clinical and Laboratory Investigation, 75(2), 145–151.

    Article  Google Scholar 

  41. Momohara, S., Kashiwazaki, S., Inoue, K., Saito, S., & Nakagawa, T. (1997). Elastase from polymorphonuclear leukocyte in articular cartilage and synovial fluids of patients with rheumatoid arthritis. Clinical Rheumatology, 16(2), 133–139.

    Article  Google Scholar 

  42. Srivastava, S., Singh, P., Jha, K. K., Mishra, G., Srivastava, S., & Khosa, R. L. (2012). Evaluation of anti-arthritic potential of the methanolic extract of the aerial parts of Costus speciosus. Journal of Ayurveda and Integrative Medicine, 3(4), 204.

    Article  Google Scholar 

  43. Sesti, F., Tsitsilonis, O. E., Kotsinas, A., & Trougakos, I. P. (2012). Oxidative stress-mediated biomolecular damage and inflammation in tumorigenesis. In Vivo, 26(3), 395–402.

    Google Scholar 

  44. Wruck, C. J., Fragoulis, A., Gurzynski, A., Brandenburg, L. O., Kan, Y. W., Chan, K., Hassenpflug, J., Freitag-Wolf, S., Varoga, D., Lippross, S., & Pufe, T. (2011). Role of oxidative stress in rheumatoid arthritis: Insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases, 70(5), 844–850.

    Article  Google Scholar 

  45. Taysi, S., Polat, F., Gul, M., Sari, R. A., & Bakan, E. (2002). Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatology International, 21(5), 200–204.

    Article  Google Scholar 

  46. Olumuyiwa-Akeredolu, O. O., & Pretorius, E. (2015). Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatology International, 35, 1955–1964.

    Article  Google Scholar 

  47. Santosh, S., Rooke, T. W., Bailey, K. R., McConnell, J. P., & Kullo, I. J. (2004). Relation of markers of inflammation (C-reactive protein, white blood cell count, and lipoprotein-associated phospholipase A2) to the ankle-brachial index. Vascular Medicine, 9, 171–176.

    Article  Google Scholar 

  48. Brigden, M. L. (1999). Clinical utility of the erythrocyte sedimentation rate. American Family Physician, 60(5), 1443–1450.

    Google Scholar 

Download references

Acknowledgements

ASPM’s K. T. Patil College of Pharmacy, Nargund College of Pharmacy, Bangalore, and JSPM’s Charak College of Pharmacy and Research, Pune, provided the essential facilities for this research.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunjegaonkar, S.M., Nargund, S.L., Joshi, A.A., Bhalerao, A.V. (2023). Hinokitiol Attenuates LPS-Induced Arthritic Inflammation: A Preclinical Perspective. In: Joseph, F.J.J., Balas, V.E., Rajest, S.S., Regin, R. (eds) Computational Intelligence for Clinical Diagnosis. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-031-23683-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23683-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23682-2

  • Online ISBN: 978-3-031-23683-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics