Skip to main content

Whole-Body Chemiluminescence and Fluorescence Imaging of Inflammation

  • Chapter
  • First Online:
Imaging Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 91))

  • 534 Accesses

Abstract

This chapter focuses on the application of optical imaging methods to visualize inflammation in living animals. Optical imaging has several advantages as it operates without any involvement of ionizing radiation or strong magnetic fields. Optical imaging uses nonradioactive probes that produce chemiluminescent or fluorescent light signals in the visible, far-red, or near-infrared (NIR) range of the electromagnetic spectrum. To visualize inflammation at the tissue level, high molecular weight probes can be used to produce fluorescent contrast in the inflamed tissues by taking advantage of the enhanced permeability and retention (EPR) effect. In addition to this general, but rather less selective, approach, the chapter discusses the more specific and mechanistic imaging strategies that specifically target several unique biological aspects of inflammatory processes at the cellular and enzyme levels. These unique aspects include the inflammatory phagocytes that produce reactive oxygen species (ROS), and the tissue-remodeling proteases present in the inflamed tissues. Once activated, specific probes can produce visible or NIR luminescent signals that can be quantified for assessing inflammatory responses. Although visible light is subject to scattering and attenuation in the tissue, fluorescent probes that use NIR light sources have improved tissue penetration allowing generation of 3D tomographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  2. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fakhoury M. Inflammation in Alzheimer’s disease. Curr Alzheimer Res. 2021;17:959–61. https://doi.org/10.2174/156720501711210101110513.

    Article  CAS  Google Scholar 

  4. Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018:18. https://doi.org/10.4110/in.2018.18.e27.

  5. Jones HR, Robb CT, Perretti M, Rossi AG. The role of neutrophils in inflammation resolution. Semin Immunol. 2016;28:137–45. https://doi.org/10.1016/j.smim.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  6. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303–11. https://doi.org/10.4049/jimmunol.177.10.7303.

    Article  CAS  PubMed  Google Scholar 

  7. Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, et al. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep. 2017;7:4350. https://doi.org/10.1038/s41598-017-04100-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011;10:655–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yi Y-S. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw. 2016;16:337. https://doi.org/10.4110/in.2016.16.6.337.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Antonov AS, Antonova GN, Munn DH, Mivechi N, Lucas R, Catravas JD, et al. αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation. J Cell Physiol. 2011;226:469–76. https://doi.org/10.1002/jcp.22356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mezu-Ndubuisi OJ, Maheshwari A. The role of integrins in inflammation and angiogenesis. Pediatr Res. 2021;89:1619–26. https://doi.org/10.1038/s41390-020-01177-9.

    Article  PubMed  Google Scholar 

  12. Dai R, Wu Z, Chu HY, Lu J, Lyu A, Liu J, et al. Cathepsin K: the action in and beyond bone. Front Cell Dev Biol. 2020:8. https://doi.org/10.3389/fcell.2020.00433.

  13. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8:221–33. https://doi.org/10.1038/nrm2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Canton J. Phagosome maturation in polarized macrophages. J Leukoc Biol. 2014;96:729–38. https://doi.org/10.1189/jlb.1MR0114-021R.

    Article  CAS  PubMed  Google Scholar 

  15. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. https://doi.org/10.1152/physrev.00044.2005.

    Article  CAS  PubMed  Google Scholar 

  16. El-Benna J, Hurtado-Nedelec M, Marzaioli V, Marie J-C, Gougerot-Pocidalo M-A, Dang PM-C. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev. 2016;273:180–93. https://doi.org/10.1111/imr.12447.

    Article  CAS  PubMed  Google Scholar 

  17. Stasia MJ. CYBA encoding p22phox, the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene. 2016;586:27–35. https://doi.org/10.1016/j.gene.2016.03.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davies MJ, Hawkins CL. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal. 2020;32:957–81. https://doi.org/10.1089/ars.2020.8030.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox Signaling: roles in cellular stress response, stress tolerance, and tissue repair. Sibley DR, editor. Pharmacol Rev. 2011;63:218–42. https://doi.org/10.1124/pr.110.002980.

    Article  CAS  PubMed  Google Scholar 

  20. Fuhrman B, Shiner M, Volkova N, Aviram M. Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentiation. Free Radic Biol Med. 2004;37:259–71. https://doi.org/10.1016/j.freeradbiomed.2004.04.026.

    Article  CAS  PubMed  Google Scholar 

  21. Ejlerskov P, Christensen DP, Beyaie D, Burritt JB, Paclet M-H, Gorlach A, et al. NADPH oxidase is internalized by Clathrin-coated pits and localizes to a Rab27A/B GTPase-regulated secretory compartment in activated macrophages. J Biol Chem. 2012;287:4835–52. https://doi.org/10.1074/jbc.M111.293696.

    Article  CAS  PubMed  Google Scholar 

  22. Kumar AP, Piedrafita FJ, Reynolds WF. Peroxisome proliferator-activated receptor γ ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J Biol Chem. 2004;279:8300–15. https://doi.org/10.1074/jbc.M311625200.

    Article  CAS  PubMed  Google Scholar 

  23. Stapels DA, Geisbrecht BV, Rooijakkers SH. Neutrophil serine proteases in antibacterial defense. Curr Opin Microbiol. 2015;23:42–8. https://doi.org/10.1016/j.mib.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  24. Chua F, Laurent GJ. Neutrophil elastase: mediator of extracellular matrix destruction and accumulation. Proc Am Thorac Soc. 2006;3:424–7. https://doi.org/10.1513/pats.200603-078AW.

    Article  CAS  PubMed  Google Scholar 

  25. Garratt LW, Sutanto EN, Ling K-M, Looi K, Iosifidis T, Martinovich KM, et al. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. Eur Respir J. 2015;46:384–94. https://doi.org/10.1183/09031936.00212114.

    Article  CAS  PubMed  Google Scholar 

  26. Elkington PT, Green JA, Friedland JS. Analysis of matrix metalloproteinase secretion by macrophages. 2009. p. 253–65. doi:https://doi.org/10.1007/978-1-59745-396-7_16.

  27. Krotova K, Khodayari N, Oshins R, Aslanidi G, Brantly ML. Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway. Sci Rep. 2020;10:15874. https://doi.org/10.1038/s41598-020-72667-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases. Cell. 2020;9:1076. https://doi.org/10.3390/cells9051076.

    Article  CAS  Google Scholar 

  29. Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett. 2017; https://doi.org/10.3892/ol.2017.6924.

  30. Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529. https://doi.org/10.2741/1817.

    Article  CAS  PubMed  Google Scholar 

  31. Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The ins and outs of cathepsins: physiological function and role in disease management. Cell. 2020;9:1679. https://doi.org/10.3390/cells9071679.

    Article  CAS  Google Scholar 

  32. Conus S, Simon H. Cathepsins and their involvement in immune responses. Swiss Med Wkly. 2010; https://doi.org/10.4414/smw.2010.13042.

  33. Szulc-DÄ…browska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in bacteria-macrophage interaction: defenders or victims of circumstance? Front Cell Infect Microbiol. 2020:10. https://doi.org/10.3389/fcimb.2020.601072.

  34. Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine cathepsins in tumor-associated immune cells. Front Immunol. 2019:10. https://doi.org/10.3389/fimmu.2019.02037.

  35. Fuchs N, Meta M, Schuppan D, Nuhn L, Schirmeister T. Novel opportunities for cathepsin S inhibitors in cancer immunotherapy by nanocarrier-mediated delivery. Cell. 2020;9:2021. https://doi.org/10.3390/cells9092021.

    Article  CAS  Google Scholar 

  36. Montague-Cardoso K, Malcangio M. Cathepsin S as a potential therapeutic target for chronic pain. Med Drug Discov. 2020;7:100047. https://doi.org/10.1016/j.medidd.2020.100047.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 2005;23:313–20. https://doi.org/10.1038/nbt1074.

    Article  CAS  PubMed  Google Scholar 

  38. Roda A, Pasini P, Mirasoli M, Michelini E, Guardigli M. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol. 2004;22:295–303. https://doi.org/10.1016/j.tibtech.2004.03.011.

    Article  CAS  PubMed  Google Scholar 

  39. Ntziachristos V, Bremer C, Weissleder R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 2003;13:195–208. https://doi.org/10.1007/s00330-002-1524-x.

    Article  PubMed  Google Scholar 

  40. Li S, Ruan Z, Zhang H, Xu H. Recent achievements of bioluminescence imaging based on firefly luciferin-luciferase system. Eur J Med Chem. 2021;211:113111. https://doi.org/10.1016/j.ejmech.2020.113111.

    Article  CAS  PubMed  Google Scholar 

  41. Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng. 2002;4:235–60. https://doi.org/10.1146/annurev.bioeng.4.111901.093336.

    Article  CAS  PubMed  Google Scholar 

  42. Mezzanotte L, van ‘t Root M, Karatas H, Goun EA, CWGM L. In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol. 2017;35:640–52. https://doi.org/10.1016/j.tibtech.2017.03.012.

    Article  CAS  PubMed  Google Scholar 

  43. Zambito G, Chawda C, Mezzanotte L. Emerging tools for bioluminescence imaging. Curr Opin Chem Biol. 2021;63:86–94. https://doi.org/10.1016/j.cbpa.2021.02.005.

    Article  CAS  PubMed  Google Scholar 

  44. Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension. 2007;49:717–27. https://doi.org/10.1161/01.HYP.0000258594.87211.6b.

    Article  CAS  PubMed  Google Scholar 

  45. Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues. Luminescence. 2011;26:685–8. https://doi.org/10.1002/bio.1296.

    Article  CAS  PubMed  Google Scholar 

  46. Gross S, Gammon ST, Moss BL, Rauch D, Harding J, Heinecke JW, et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med. 2009;15:455–61. https://doi.org/10.1038/nm.1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kielland A, Blom T, Nandakumar KS, Holmdahl R, Blomhoff R, Carlsen H. In vivo imaging of reactive oxygen and nitrogen species in inflammation using the luminescent probe L-012. Free Radic Biol Med. 2009;47:760–6. https://doi.org/10.1016/j.freeradbiomed.2009.06.013.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou J, Tsai Y-T, Weng H, Tang L. Noninvasive assessment of localized inflammatory responses. Free Radic Biol Med. 2012;52:218–26. https://doi.org/10.1016/j.freeradbiomed.2011.10.452.

    Article  CAS  PubMed  Google Scholar 

  49. Tseng J-C, Kung AL. In vivo imaging of inflammatory phagocytes. Chem Biol. 2012;19:1199–209. https://doi.org/10.1016/j.chembiol.2012.08.007.

    Article  CAS  PubMed  Google Scholar 

  50. Okajima T, Ohsaka T. Chemiluminescence of lucigenin by electrogenerated superoxide ions in aqueous solutions. Luminescence. 2003;18:49–57. https://doi.org/10.1002/bio.706.

    Article  CAS  PubMed  Google Scholar 

  51. Rezende F, Prior K-K, Löwe O, Wittig I, Strecker V, Moll F, et al. Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays. Free Radic Biol Med. 2017;102:57–66. https://doi.org/10.1016/j.freeradbiomed.2016.11.019.

    Article  CAS  PubMed  Google Scholar 

  52. Shuhendler AJ, Pu K, Cui L, Uetrecht JP, Rao J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol. 2014;32:373–80. https://doi.org/10.1038/nbt.2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfleger KDG, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods. 2006;3:165–74. https://doi.org/10.1038/nmeth841.

    Article  CAS  PubMed  Google Scholar 

  54. Eglen RM, Reisine T, Roby P, Rouleau N, Illy C, Bossé R, et al. The use of AlphaScreen technology in HTS: current status. Curr Chem Genomics. 2008;1:2–10. https://doi.org/10.2174/1875397300801010002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang N, Francis KP, Prakash A, Ansaldi D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med. 2013;19:500–5. https://doi.org/10.1038/nm.3110.

    Article  CAS  PubMed  Google Scholar 

  56. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92. https://doi.org/10.2217/nnm.16.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dragulescu-Andrasi A, Chan CT, De A, Massoud TF, Gambhir SS. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc Natl Acad Sci. 2011;108:12060–5. https://doi.org/10.1073/pnas.1100923108.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bhuckory S, Kays JC, Dennis AM. In vivo biosensing using resonance energy transfer. Biosensors. 2019;9:76. https://doi.org/10.3390/bios9020076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. So M-K, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24:339–43. https://doi.org/10.1038/nbt1188.

    Article  CAS  PubMed  Google Scholar 

  60. Xiong L, Shuhendler AJ, Rao J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun. 2012;3:1193. https://doi.org/10.1038/ncomms2197.

    Article  CAS  PubMed  Google Scholar 

  61. Augusto FA, de Souza GA, de Souza Júnior SP, Khalid M, Baader WJ. Efficiency of electron transfer initiated chemiluminescence. Photochem Photobiol. 2013;89:1299–317. https://doi.org/10.1111/php.12102.

    Article  CAS  PubMed  Google Scholar 

  62. Rauhut MM. Chemiluminescence from concerted peroxide decomposition reactions. Acc Chem Res. 1969;2:80–7. https://doi.org/10.1021/ar50015a003.

    Article  CAS  Google Scholar 

  63. Rauhut MM, Bollyky LJ, Roberts BG, Loy M, Whitman RH, Iannotta AV, et al. Chemiluminescence from reactions of electronegatively substituted aryl oxalates with hydrogen peroxide and fluorescent compounds. J Am Chem Soc. 1967;89:6515–22. https://doi.org/10.1021/ja01001a025.

    Article  CAS  Google Scholar 

  64. Freeman R, Liu X, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using Hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011;133:11597–604. https://doi.org/10.1021/ja202639m.

    Article  CAS  PubMed  Google Scholar 

  65. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater. 2007;6:765–9. https://doi.org/10.1038/nmat1983.

    Article  CAS  PubMed  Google Scholar 

  66. Bag S, Tseng J-C, Rochford J. A BODIPY-luminol chemiluminescent resonance energy-transfer (CRET) cassette for imaging of cellular superoxide. Org Biomol Chem. 2015;13:1763–7. https://doi.org/10.1039/C4OB02413C.

    Article  CAS  PubMed  Google Scholar 

  67. Kambayashi Y, Ogino K. Reestimation of Cypridina Luciferin Analogs (MCLA) as a chemiluminescence probe to detect active oxygen species—cautionary note for use of MCLA. J Toxicol Sci. 2003;28:139–48. https://doi.org/10.2131/jts.28.139.

    Article  CAS  PubMed  Google Scholar 

  68. Tseng J-C, Bailey D, Tupper T, Kung AL. Using glow stick chemistry for biological imaging. Mol Imaging Biol. 2014;16:478–87. https://doi.org/10.1007/s11307-014-0721-8.

    Article  PubMed  Google Scholar 

  69. Tseng J-C, Kung AL. In vivo imaging of endogenous enzyme activities using luminescent 1,2-dioxetane compounds. J Biomed Sci. 2015;22:45. https://doi.org/10.1186/s12929-015-0155-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leblond F, Davis SC, Valdés PA, Pogue BW. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B Biol. 2010;98:77–94. https://doi.org/10.1016/j.jphotobiol.2009.11.007.

    Article  CAS  Google Scholar 

  71. Maeda H, Matsumura Y. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev. 2011;63:129–30. https://doi.org/10.1016/j.addr.2010.05.001.

    Article  CAS  PubMed  Google Scholar 

  72. Eaton VL, Vasquez KO, Goings GE, Hunter ZN, Peterson JD, Miller SD. Optical tomographic imaging of near infrared imaging agents quantifies disease severity and immunomodulation of experimental autoimmune encephalomyelitis in vivo. J Neuroinflammation. 2013;10:904. https://doi.org/10.1186/1742-2094-10-138.

    Article  CAS  Google Scholar 

  73. Buono C, Anzinger JJ, Amar M, Kruth HS. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest. 2009;119:1373–81. https://doi.org/10.1172/JCI35548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uddin MJ, Crews BC, Blobaum AL, Kingsley PJ, Gorden DL, McIntyre JO, et al. Selective visualization of cyclooxygenase-2 in inflammation and cancer by targeted fluorescent imaging agents. Cancer Res. 2010;70:3618–27. https://doi.org/10.1158/0008-5472.CAN-09-2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han W, Zaynagetdinov R, Yull FE, Polosukhin VV, Gleaves LA, Tanjore H, et al. Molecular imaging of folate receptor β–positive macrophages during acute lung inflammation. Am J Respir Cell Mol Biol. 2015;53:50–9. https://doi.org/10.1165/rcmb.2014-0289OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen W-T, Mahmood U, Weissleder R, Tung C-H. Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther. 2005;7:R310–7. https://doi.org/10.1186/ar1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bridgewater RE, Norman JC, Caswell PT. Integrin trafficking at a glance. J Cell Sci. 2012;125:3695–701. https://doi.org/10.1242/jcs.095810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Paul NR, Jacquemet G, Caswell PT. Endocytic trafficking of integrins in cell migration. Curr Biol. 2015;25:R1092–105. https://doi.org/10.1016/j.cub.2015.09.049.

    Article  CAS  PubMed  Google Scholar 

  79. Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol. 2019;21:122–32. https://doi.org/10.1038/s41556-018-0223-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Su G, Atakilit A, Li JT, Wu N, Bhattacharya M, Zhu J, et al. Absence of integrin αvβ3 enhances vascular leak in mice by inhibiting endothelial cortical actin formation. Am J Respir Crit Care Med. 2012;185:58–66. https://doi.org/10.1164/rccm.201108-1381OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of αvβ3 integrin-targeted positron emission tomography tracer 18 F-Galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8. https://doi.org/10.1161/CIRCIMAGING.108.846865.

    Article  PubMed  Google Scholar 

  82. Jenkins WS, Vesey AT, Vickers A, Neale A, Moles C, Connell M, et al. In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis. Heart. 2019;105:1868–75. https://doi.org/10.1136/heartjnl-2019-315103.

    Article  CAS  PubMed  Google Scholar 

  83. Razavian M, Marfatia R, Mongue-Din H, Tavakoli S, Sinusas AJ, Zhang J, et al. Integrin-targeted imaging of inflammation in vascular remodeling. Arterioscler Thromb Vasc Biol. 2011;31:2820–6. https://doi.org/10.1161/ATVBAHA.111.231654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-binding integrins revisited: how recently discovered functions and novel synthetic ligands (re-)shape an ever-evolving field. Cancers (Basel). 2021;13:1711. https://doi.org/10.3390/cancers13071711.

    Article  CAS  PubMed  Google Scholar 

  85. Lin S-A, Patel M, Suresch D, Connolly B, Bao B, Groves K, et al. Quantitative longitudinal imaging of vascular inflammation and treatment by ezetimibe in apoE mice by FMT using new optical imaging biomarkers of cathepsin activity and αvβ3 integrin. Int J Mol Imaging. 2012;2012:1–13. https://doi.org/10.1155/2012/189254.

    Article  CAS  Google Scholar 

  86. Wu L, Sedgwick AC, Sun X, Bull SD, He X-P, James TD. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res. 2019;52:2582–97. https://doi.org/10.1021/acs.accounts.9b00302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Driever SM, Fryer MJ, Mullineaux PM, Baker NR. Imaging of reactive oxygen species in vivo. In: Pfannschmidt T, editor. Plant signal transduct. Totowa, NJ: Humana Press; 2009. p. 109–16. https://doi.org/10.1007/978-1-59745-289-2_7.

    Chapter  Google Scholar 

  88. Kundu K, Knight SF, Willett N, Lee S, Taylor WR, Murthy N. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew Chemie Int Ed. 2009;48:299–303. https://doi.org/10.1002/anie.200804851.

    Article  CAS  Google Scholar 

  89. Prunty MC, Aung MH, Hanif AM, Allen RS, Chrenek MA, Boatright JH, et al. In vivo imaging of retinal oxidative stress using a reactive oxygen species–activated fluorescent probe. Investig Opthalmol Vis Sci. 2015;56:5862. https://doi.org/10.1167/iovs.15-16810.

    Article  CAS  Google Scholar 

  90. Ito R, Kamiya M, Urano Y. Molecular probes for fluorescence image-guided cancer surgery. Curr Opin Chem Biol. 2022;67:102112. https://doi.org/10.1016/j.cbpa.2021.102112.

    Article  CAS  PubMed  Google Scholar 

  91. Suri S, Lehman SM, Selvam S, Reddie K, Maity S, Murthy N, et al. In vivo fluorescence imaging of biomaterial-associated inflammation and infection in a minimally invasive manner. J Biomed Mater Res Part A. 2015;103:76–83. https://doi.org/10.1002/jbm.a.35162.

    Article  CAS  Google Scholar 

  92. Uusitalo LM, Hempel N. Recent advances in intracellular and in vivo ROS sensing: focus on nanoparticle and nanotube applications. Int J Mol Sci. 2012;13:10660–79. https://doi.org/10.3390/ijms130910660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu L, Wu I-C, DuFort CC, Carlson MA, Wu X, Chen L, et al. Photostable Ratiometric Pdot probe for in vitro and in vivo imaging of hypochlorous acid. J Am Chem Soc. 2017;139:6911–8. https://doi.org/10.1021/jacs.7b01545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Funovics M, Weissleder R, Tung C-H. Protease sensors for bioimaging. Anal Bioanal Chem. 2003;377:956–63. https://doi.org/10.1007/s00216-003-2199-0.

    Article  CAS  PubMed  Google Scholar 

  95. Weissleder R, Tung C-H, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8. https://doi.org/10.1038/7933.

    Article  CAS  PubMed  Google Scholar 

  96. Wunder A, Tung C-H, Müller-Ladner U, Weissleder R, Mahmood U. In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum. 2004;50:2459–65. https://doi.org/10.1002/art.20379.

    Article  CAS  PubMed  Google Scholar 

  97. Kossodo S, Zhang J, Groves K, Cuneo GJ, Handy E, Morin J, et al. Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury. Int J Mol Imaging. 2011;2011:1–11. https://doi.org/10.1155/2011/581406.

    Article  CAS  Google Scholar 

  98. Akers WJ, Xu B, Lee H, Sudlow GP, Fields GB, Achilefu S, et al. Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjug Chem. 2012;23:656–63. https://doi.org/10.1021/bc300027y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen X, Lee D, Yu S, Kim G, Lee S, Cho Y, et al. In vivo near-infrared imaging and phototherapy of tumors using a cathepsin B-activated fluorescent probe. Biomaterials. 2017;122:130–40. https://doi.org/10.1016/j.biomaterials.2017.01.020.

    Article  CAS  PubMed  Google Scholar 

  100. Glinzer A, Ma X, Prakash J, Kimm MA, Lohöfer F, Kosanke K, et al. Targeting elastase for molecular imaging of early atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2017;37:525–33. https://doi.org/10.1161/ATVBAHA.116.308726.

    Article  CAS  PubMed  Google Scholar 

  101. Korideck H, Peterson JD. Noninvasive quantitative tomography of the therapeutic response to dexamethasone in ovalbumin-induced murine asthma. J Pharmacol Exp Ther. 2009;329:882–9. https://doi.org/10.1124/jpet.108.147579.

    Article  CAS  PubMed  Google Scholar 

  102. Ibarra JM, Jimenez F, Martinez HG, Clark K, Ahuja SS. MMP-activated fluorescence imaging detects early joint inflammation in collagen-antibody-induced arthritis in CC-chemokine Receptor-2-null mice, in-vivo. Int J Inflam. 2011;2011:1–6. https://doi.org/10.4061/2011/691587.

    Article  Google Scholar 

  103. Peterson JD, LaBranche TP, Vasquez KO, Kossodo S, Melton M, Rader R, et al. Optical tomographic imaging discriminates between disease-modifying anti-rheumatic drug (DMARD) and non-DMARD efficacy in collagen antibody-induced arthritis. Arthritis Res Ther. 2010;12:R105. https://doi.org/10.1186/ar3038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Chieh Tseng .

Editor information

Editors and Affiliations

Ethics declarations

Funding/Conflict of Interest: This work is sponsored by PerkinElmer Inc., and its R&D research division for developing advanced molecular imaging technologies. Both authors of this chapter (J.C. Tseng and J.D. Peterson) are employees of PerkinElmer Inc.

Ethical Approval: All animal research involved in this work followed the guidelines of PerkinElmer’s Institutional Animal Care and Use Committee (IACUC). A research protocol (#01-0112) was approved for this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tseng, JC., Peterson, J.D. (2023). Whole-Body Chemiluminescence and Fluorescence Imaging of Inflammation. In: Man, F., Cleary, S.J. (eds) Imaging Inflammation. Progress in Inflammation Research, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-031-23661-7_5

Download citation

Publish with us

Policies and ethics